• 제목/요약/키워드: Stationkeeping

Search Result 14, Processing Time 0.026 seconds

COMS EAST/WEST STATIONKEEPING FUEL CONUMPTION CONSIDERING MANDATORY OBSERVATION TIME SOLOTS OF OPTICAL PAYLOADS

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.166-170
    • /
    • 2007
  • This paper discusses stationkeeping of COMS which accommodates two optical payloads. In order to provide good quality images to the users, the east/west stationkeeping which is strong perturbing sources shall be performed outside of mandatory observation time slots asked by users. If the east/west stationkeeping time is resulted inside of the mandatory time slots, it shall be shifted in order to be performed outside of mandatory time slot, or a new stationkeeping shall be planned. This constraint is expected to ask additional fuel consumption in comparison with tradition stationkeeping. This paper analyzes the impact of mandatory time slots to the stationkeeping fuel consumption. Orbit simulations have been conducted to determine validity of given constraints in the light of fuel requirement and stationkeeping accuracy.

  • PDF

LINEAR PROGRAMMING SOLUTIONS OF GENERALIZED LINEAR IMPULSIVE CORRECTION FOR GEOSTATIONARY STATIONKEEPING

  • Park, Jae-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 1996
  • The generalized linear impulsive correction problem is applied to make a linear programming problem for optimizing trajectory of an orbiting spacecraft. Numerical application for the stationkeeping maneuver problem of geostationary satellite shows that this problem can efficiently find the optimal solution of the stationkeeping parameters, such as velocity changes, and the points of impulse by using the revised simplex method.

  • PDF

Feasibility Study for Development of New Stationkeeping System (Flapping Foil을 적용한 위치유지시스템 개발을 위한 운동시험)

  • Yu, Young-Jae;Sim, Woo-Lim;Kumar, Rupesh;Kim, Dong-Ju;Shin, Hyun-Kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, experiments with a floater using flapping foils were performed to develop a new station keeping system that can maintain its position in waves without mooring lines. The foils applied to this system generate thrust using wave energy. In this experiment, the motion of the floater was analyzed in three different wave periods. Sixteen foils were attached to the cylindrical floater. The thrust of each foil was controlled by changing its azimuth angle, and three cases were compared. Based on the previous data, we made more precise measurements and found an optimal model for stationkeeping under each wave condition. We verified the potential of this new stationkeeping system using flapping foils, and conclusions were drawn from the results.

Compute Effective Onboard Stationkeeping System for Geostationary Satellites (저계산량의 정지위성 탑재용 위치유지 시스템에 관한 연구)

  • Park,Bong-Gyu;Tak,Min-Je;Bang,Hyo-Chung;Choe,Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.64-74
    • /
    • 2003
  • This paper proposes a new autonomous stationkeeping system suitable for geostationary satellite and conducts computer simulation to verify the proposed algorithm. The proposed onboard system receives pseudo-range signal from ground equipments located at two different position with long baseline, determines the orbit error in realtime and generates orbit control commands. For minimized onboard stationkeeping logic and better reliability, the orbit controller is designed to generate control signal to have the orbit roughly follow predetermined reference range data which is generated through ground based computer simulation. The reference range data is assumed to be uploaded with time tag. A simple orbit controller is proposed which combines the reference $\Delta$V and feedback control signal. Finally, the performance of the proposed system is verified through the computer simulations.

Autonomous Stationkeeping System for Geostationary Satellite (정지위성 자동위치유지 시스템에 관한 연구)

  • Park, Bong-Kyu;Tahk, Min-Jea;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.67-76
    • /
    • 2004
  • This paper improves existing 'fly-the-wire' based autonomous station-keeping system, suitable for geostationary satellite and introduces results of computer simulations conducted to verify the algorithm. The on-board stationkeeping system receives pseudo-range signals from two ground equipments located with long baseline, determines the orbit error in realtime and generates orbit control commands. To reduce fuel consumption, this paper proposes an on-board orbit control logic using modified fly-the-wire method. The modified fly-the-wire method de-couples error components into two dynamic modes, harmonic and linear motion. The harmonic error components are removed by applying output commands produced by feedback controller, and the linear motions are controlled by the correction ${\Delta}V\;s$ added to reference maneuvers. The reference maneuvers are generated through the ground based computer simulation and embedded or uploaded into the on-board computer with time tags. Finally, the performance of the proposed algorithm is verified through a series of computer simulations.

A Study on the Wheel Momentum Management Logic of a Geosynchronous Satellite (정지궤도위성의 휠모멘텀 관리 로직 연구)

  • Park, Yeong Ung;Nam, Mun Gyeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.85-94
    • /
    • 2003
  • A geosynchronous Satellite in general, has two momentum management logics to maintain its wheel momentum tin the stable region. The one is applied in order to control accumulative wheel momentum in the momentum dumping mode and the other is utilized in order to control attitude errors during the stationkeeping. In this paper, the momentum management logics are explained for dumping/sationkeeping mode and the logics are verified by simulation on the 3 attitude subsystem.

Fuel Budget Analysis of the COMS Momentum Dumping (통신해양기상위성 (COMS)의 모멘텀 덤핑 사용 연료량 분석)

  • Park, Bong-Kyu;Yang, Koon-Ho;Park, Young-Woong;Choi, Jae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.81-88
    • /
    • 2005
  • This paper analyzes the fuel consumption for the momentum dumping of the COMS which has a single solar array system. First, numerical analyses are conducted to find an optimal momentum dumping time considering the COMS configuration. It is assumed that the momentum dumping is conducted once a day and at a fixed time of a day. Secondly, in an effort to reduce the momentum dumping fuel consumption, this paper proposes a new approach which combines the momentum dumping and the ordinary north/south stationkeeping. Finally, to evaluate the proposed technique, the stationkeeping simulations are conducted and analyzed.

Stationkeeping of an Airship

  • Park, Chang-Su;Bang, Hyo-Choong;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.1-148
    • /
    • 2001
  • The airship is starting to receive new highlights as a stable floating platform. A floating platform can serve as a telecommunication relay station or an environmental outpost. Much of these operations require unmanned autonomous operation on the airship. Due to difficulties in modelling and identifying the airship, controlling the airship is not an easy task. Different from the normal aircraft, the airship is affected by "added mass" and buoyancy. The added mass is the additional mass felt required to move the object in a fluid. As we are searching for a stable floating platform, controlling the airship to keep station is critical. We use a simple airship model with added mass for simulation. Classical controller is used to find acceptable airship performances.

  • PDF

Development of Design Static Property Analysis of Mooring System Caisson for Offshore Floating Wind Turbine

  • Dodaran, Asgar Ahadpour;Park, Sang-Kil
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • A all floating structures operating within a limited area require, stationkeeping to maintain the motions of the floating structure within permissible limits. In this study, methods for selecting and optimizing the mooring system Caisson for floating wind turbines in shallow water are investigated. The design of the mooring system is checked against the governing rules and standards. Adequately verifying the design of floating structures requires both numerical simulations and model testing, the combination of which is referred to as the hybrid method of design verification. The challenge in directly scaling moorings for model tests is the depth and spatial limitations of wave basins. It is therefore important to design and build equivalent mooring systems to ensure accurate static properties (global restoring forces and global stiffness).

Modified thrust empirical formula of a flapping foil by including the effects of azimuth angles

  • Kumar, Rupesh;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.126-135
    • /
    • 2021
  • Wave energy is one of the most available sources of renewable energy in the world. It has been previously proven that the flapping foil can generate thrust forces using energy from the surface waves and an empirical formula was proposed to predict the thrust forces generated by a flapping foil consist of NACA0015 section (Kumar and Shin, 2019a). However, the proposed empirical formula was restricted to the head waves i.e. 0° azimuth angle which was not useful for the flapping foils encountering with oblique and following waves. Therefore, in this study, the thrust empirical formula was modified to include the effects of azimuth angles based on the experimentally obtained data. And the modified empirical equations were validated by the combination of foils experimentally.