• Title/Summary/Keyword: Static.Dynamic Efficiency

Search Result 265, Processing Time 0.027 seconds

Dynamic Analysis of National R&D Projects' Qualitative Efficiency (국가연구개발사업 질적 효율성의 동태적 분석)

  • Kim, Kyungsoo;Cho, Namwook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • Korea's R&D investment has significantly increased in recent years. However, the efficiency of R&D investment is still in question. In order to examine the ways to improve the efficiency of R&D investment, this paper presents dynamic analysis on both quantitative and qualitative efficiency of R&D projects. A Data Envelopment Analysis(DEA)/Window method is used to analyze static and dynamic efficiencies of Industrial Material R&D projects in Korea from 2012 to 2016. As a result, statistically significant differences between quantitative and qualitative efficiency have been found. It has been observed that characteristics of Decision Making Units(DMUs) have an impact on both static and dynamic efficiencies. In particular, textile and ceramic projects showed relatively stable qualitative efficiency for a short-term perspective, while steel and chemical projects showed such stability for a long-term perspective. Among the types of project principals, universities showed relatively stable efficiency, compared with private sectors and research institutes. The results of this paper can be used as a guideline to manage the performance and stability of R&D projects' efficiency.

Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure (지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법)

  • Lee, Do-Geun;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

Market Efficiency Analysis between Facility-Based and Service-Based Competition

  • Seo, Il-Won;Lee, Duk-Hee;Kim, Byung-Woon
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.587-596
    • /
    • 2008
  • Facility-based competition (FBC) in the telecommunications market is considered to have lower static efficiency in the short term and higher dynamic efficiency in the long term. Under service-based competition (SBC), the entrant can reduce its setup costs by leasing network facilities from the incumbent, which makes the entrant viable, pushes the market price down and promotes static efficiency. This paper attempts to measure static efficiency by comparing the profits of the incumbent and entrant in terms of consumer surplus and social welfare under each competition type by extending the Stackelberg model. The results, assuming a linear demand function and variation in regulatory level, show that FBC results in higher social welfare than SBC on the whole. However, SBC accompanied by strong regulation is also shown to have the potential to be superior over FBC. It is also revealed that FBC exhibits a higher producer surplus (particularly, the incumbent's producer surplus) and is, therefore, more desirable in terms of dynamic efficiency. When the entrant's cost is high in FBC, social welfare is shown to be lowered, implying that cost competitiveness is a necessary condition for social welfare.

  • PDF

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

Analysis of Business Process Efficiency Based on Task assignments (BPM에서 업무할당방식이 업무효율성에 미치는 영향)

  • Wang, Zhen-Guo;Bae, Hye-Rim
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.127-136
    • /
    • 2009
  • This paper purposes analyzing how task assignments influence on business process efficiency, and improving business process efficiency in Business Process Management (BPM) environments. For this purpose, task assignment is categorized into dynamic assignment and static assignment. Dynamic assignment binds a user to a task at process run-time, whereas static assignments assigns a task to a user at process build-time. So far, the influence of task assignment methods has not been studied. We, in this paper, analyze the business process efficiency using two different assigning rule, in terms of cycle time as a efficiency measure. The comparison result can provide a guideline for a company who wants to employ commercial BPM systems.

Performance and Transmission Efficiency Analysis of 2-Mode Hydro Mechanical Transmission (2-모드 기계유압식 무단변속기의 성능 및 전달효율해석)

  • Jung Gyuhong;Kim Hyoungeui;Kim Jongki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2005
  • HMT is a type of continuously variable transmission which has split power flow path characteristics with gear train and hydro static unit. The benefit of improved fuel economy and high power capacity enables it to be a promising application fur large vehicles. This paper presents the analysis results including velocity, static torque, transmission efficiency and dynamic model of the HMT that is developed for city buses. The speeds or gear shafts, the static clutch torque and split power ratio for each mode are detailed here. From the analysis of HMT transmission efficiency considering the power loss in meshed gear and hydraulic unit, we can conclude that minimization of hydraulic power is necessary for improved fuel economy design. Also, the dynamic simulation result for mode shift characteristics shows that little shift shock is observed because of the synchronized rotation speed in clutch.

The effect of design parameters on the pulverized coal separator efficiency (미분탄 분리장치의 성능에 영향을 미치는 설계인자)

  • Lee, Gun-Myung;Ha, Jong-Kwang;Ahn, Sang-Taek;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.385-389
    • /
    • 2003
  • Three-dimensional experimental analysis was conducted in the pulverizer simplified isothermal model. The experiment model was constructed on a 1/3.5 scale of 500MW pulverizer. The purpose of this study is to investigate the effect of design parameters on the pulverized coal separator efficiency. Where used pulverized coal separator design parameters are guide vane angle, static classifier angle, dynamic classifier rpm. Taguchi method was used to find the effective design parameters related to pulverized coal separator efficiency. The results of the experiment showed that guide vane angle and dynamic classifier rpm were the design key parameters. In addition to the total number of experiment cases were reduced by Taguchi method.

  • PDF

Analysis of the Efficiency of National SW R&D Projects Using DEA (DEA를 활용한 SW 국가연구개발사업 효율성 분석)

  • Ro, Seok-Hyun;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.2
    • /
    • pp.45-59
    • /
    • 2021
  • As software(SW) has been considered as a key driver of the fourth industrial revolution, significant R&D investment has been made by Korean government. Despite the attention and support by the government, systematic analysis on the SW R&D efficiency has not been fully addressed. In this study, the efficiency of SW national research and development projects was analyzed using Data Envelopment Analysis(DEA) techniques. Efficiency was measured from both static and dynamic perspectives based on 1,463 projects conducted by the National IT Industry Promotion Agency(NIPA) from 2008 to 2018. The static efficiency analysis identified the causes of inefficiency as scale and technology problems. As a result of dynamic efficiency analysis, we present a sector-specific response model using an efficiency-stability matrix. This study is meaningful in that efficiency analysis was conducted on the entire SW national R&D project, and static/dynamic efficiency analysis results are expected to be used as a guideline for planning SW national R&D project.

Performance Analysis of the Rubber Belt type CVT System (고무 벨트식 무단변속기 시스템의 성능분석)

  • Kim, Sung-Mo;Zheng, Chun-Hua;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.376-381
    • /
    • 2011
  • CVT(Continuously Variable Transmission) is one of the most promising candidates for the future automobile transmission because of its continuously variable gear ratio and reduced shift shock. It is also possible to operate the power source at its high efficiency region with CVT. The CVT system consists of thrust plate, driving pulley, belt, driven pulley, and preload spring of output shaft. In this paper, the dynamic modeling of a CVT system is completed to obtain the static performances of CVT system. A simulator is implemented on Matlab(Simulink), which can analyse the static performances of a CVT system. The methods for improving the total efficiency of a motorcycle system are also proposed based on the simulation results. In this study we increase the capacity factor of CVT up to the three times of default specification.

Structure Borne Durability Design of a Vehicle Body Structure (차체구조의 구조기인 내구 설계)

  • 김효식;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.