• Title/Summary/Keyword: Static strength

Search Result 1,625, Processing Time 0.028 seconds

Development of Hybrid OCB Beam for the Long-span Building Structures (장경간 건축구조를 위한 하이브리드 OCB보의 개발)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Kim, Tae-Kyun
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2015
  • The building structure in Korea is planned to maximize the use of space in recent. The hybrid OCB(Optimized Composite Beam) beam is developed to take advantage of using the space. The OCB beam is composed of the steel H-beam section reinforced by open strands in negative moment zone and the pretensioned PSC concrete section in positive zone. Flexural behavior of typical architectural hybrid OCB beam section was investigated by F.E.M. The 15m, 20m, 30m OCB models were tested on nonlinear material and geometry under static loading system. Following results are obtained from the analysis; 1)The OCB beam develop initial flexural cracking over full service loading. 2)Overall deflections of OCB beam under the service loads are less than those of the allowable limits in KCI Code(2012). 3)The ultimate load capacity get over the nominal strength of the OCB main section. The OCB beam is verified of structural reliability from the finite element analysis.

A Case Study of PHC Pile Behavior Characteristics on Dynamic Compacted High Rock Embankment (고성토 암버력 동다짐 지반에 시공된 PHC 말뚝의 거동특성 사례연구)

  • Yu, Nam-Jae;Yun, Dong-Kyun;Bae, Kyung-Tae;Kim, Hyung-Suk;Lee, Dal-Ho;Park, Yong-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.519-526
    • /
    • 2010
  • The construction site for $\bigcirc\bigcirc$ transformer substation was located at a mountain valley. In order to prepare the site, the valley was first filled with crushed rock debris up to 63m. Since the main concern of this project is to minimize differential settlement of the foundation of transformer facilities, dynamic compaction was performed every 7m followed by reinforcement with EMP(Ez-Mud Piling). The EMP is one of bored piling methods, in which a hole is bored by means of air percussion and maintain by injecting Ez-Mud. Then a PHC pile (Pretensioned spun High strength Concrete pile) is embedded and finalized with a hammer. In this study, bearing capacities and long term behavior of a pile installed by EMP were investigated. To achieve these objectives, a series of tests such as static and dynamic load tests were conducted. In addition, a construction quality control standard was proposed based on the test results.

  • PDF

Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis (생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

Acoustic Emission Characteristic with Local Wall Thinning under Static and Cyclic Bending Load (정적 및 반복굽힘하중을 받는 감육된 탄소강배관의 AE 특성 평가)

  • Ahn, Seok-Hwan;Kim, Jin-Hwan;Nam, Ki-Woo;Park, In-Duck;Kim, Yong-Un
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.134-139
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding range, plastic deformation range and crack progress could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. It is expected to be basic data that can protect a risk according to local wall thinning of pipes, as a real time test of AE.

  • PDF

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.

Optimal Structural Design and Fatigue Analysis of Radius Rod by Response Surface Method (반응표면법에 의한 레디어스로드 최적구조설계 및 피로해석)

  • Park, Sohyeon;Kim, Eunsung;Oh, Sangyeob;Yu, Hyosun;Yang, Sungmo;Kim, YongKwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • This paper aims to obtain the effect of lightweight on Radius rod. The response surface method used in the paper is the statistical method. Optimization method is performed with the Radius rod using the lightweight material. Structural analysis is executed by using the ANSYS program to find static and dynamic responses. From this study result, it is verified that the response surface method has the advantage of optimum value in comparison with other optimization methods. The analysis is also performed by response surface method to derive optimal design values. Steel model and aluminium initial model are obtained by finite element analysis to clarify design criteria and the results are compared with three models each other. The weights can be reduced by optimal design analysis results of these models similar to those of existing products. The quantitative goals in this study can also attained through results of fatigue analyses. The reliability on optimal design of Radius rod can be improved by use of structural and fatigue analysis results.

The Behaviour Characteristics of Reinforced Limestone Cavities by High Pressure Jet-Grouting (고압분사주입공법으로 보강된 석회암공동의 거동특성)

  • Hong, Won-Pyo;Hong, Kun-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.7-16
    • /
    • 2008
  • Limestone area have mostly certain geological defects such as the internal cavities due to melting and fractured zone by external pressures. Especially, in case of constructing grand bridge, the treatment of the limestone cavities area having the geological defects is inevitable. In order to reduce foundation settlement and to reinforce the ground in the limestone cavities area, high pressure jet grouting has been carried out as a countermeasure method. Despite the fact that high pressure jet grouting method has already adopted at a lot of limestone cavities area, but the amount of research and technical data on the high pressure jet grouting have not been accumulated properly so for. Therefore this paper intends to investigate the strength characteristics and deformation characteristics for reinforced limestone cavities area by high pressure jet grouting method. In addition, load carrying capacity obtained by static pile load test with load transfer measuring system is analyzed.

The Analysis of Frame Structure in Farm Vehicle (농장차의 프레임 구조 해석)

  • Pratama, Pandu Sandi;Supeno, Destiani;Woo, Ji-Hee;Lee, Eun-Sook;Park, Cun-Sook;Yoon, Woo-Jin;Chung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • An agriculture machines are subjected to different loads conditions. Due to this loads variations there will be certain deformations and stress which affect the performance of the electric vehicle in adverse manner. The purpose of this paper is to analyze the total deformation and stress of the electric farm vehicle middle frame based on the finite element method. The proposed electric farm vehicle has lifting and dumping capability. Therefore, in this research four operational condition such as normal condition, dumping condition, lifting condition, and lifting-dumping condition was analyzed. In this research, the design for whole frame structure is elaborated. According to the mechanical characteristics of the frame, materials are selected and manufacturability requirements are limited. Based on ANSYS 15 software, the finite element model of electric farm vehicle is established to carry out static analysis on full-loaded conditions. The simulation results shows that the proposed design meet the strength requirements and displacement requirements. The maximum deformation 0.53611 mm and maximum stress 30.163 MPa occurred at lifting-dumping condition.

Effects of Foot Placement and Height of Bed Surface on Load of the Lumbar Spine During Transfer Activity (인체모형 옮기기 시 발의 배치와 옮기는 지면 높이가 허리척추에 미치는 영향)

  • Kim, Won-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.283-291
    • /
    • 2010
  • The purpose of this study was to investigate the effect of foot placement and height of bed surface on lumbar spine load in a dummy transfer activity. Fifteen healthy male students participated in this study. All subjects were involved in four different conditions according to foot placement (11 figure and $90^{\circ}$ figure) and height of bed surface (44 cm and 66 cm) randomly. Muscular activations of the biceps brachii, rectus femoris, elector spinae using surface-EMG, vertical ground reaction using force plate, and L4/L5 compression force using 3DSSPP (3D Static Strength Prediction Program) were measured and analysed. The results showed that muscular activations were not significantly different for the various conditions except for the rectus femoris on the right side (p<.05). Futhermore, the vertical ground reaction and L4/L5 compression force were significantly different conditions (p<.05). In conclusion, it is suggested that foot placement at $90^{\circ}$ figure is safer for transfer activity compared with the 11 figure.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.