Abstract
An agriculture machines are subjected to different loads conditions. Due to this loads variations there will be certain deformations and stress which affect the performance of the electric vehicle in adverse manner. The purpose of this paper is to analyze the total deformation and stress of the electric farm vehicle middle frame based on the finite element method. The proposed electric farm vehicle has lifting and dumping capability. Therefore, in this research four operational condition such as normal condition, dumping condition, lifting condition, and lifting-dumping condition was analyzed. In this research, the design for whole frame structure is elaborated. According to the mechanical characteristics of the frame, materials are selected and manufacturability requirements are limited. Based on ANSYS 15 software, the finite element model of electric farm vehicle is established to carry out static analysis on full-loaded conditions. The simulation results shows that the proposed design meet the strength requirements and displacement requirements. The maximum deformation 0.53611 mm and maximum stress 30.163 MPa occurred at lifting-dumping condition.