• Title/Summary/Keyword: Static pile load tests

Search Result 111, Processing Time 0.035 seconds

End bearing Behavior of Open-ended Steel Pipe Piles Resting on Harden Cement Milk (시멘트밀크 고결체 위에 강관말뚝 선단 매입된 말뚝거동)

  • Park, Young-Ho;Kim, Sung-Hwan;Kim, Nag-Young;Kim, Hong-Jong;Park, Yong-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1140-1147
    • /
    • 2010
  • To find the soil plug of steel piles shaped by jet grouting, 4 blocks of cement milk with cube of 1.2m were made. 4 open-ended steel piles on the blocks were rested. The inner end part of 2 the piles was not reinforced. Cement milk 65%(SIG-1) and 100%(RJP-1) were filled into the block and height of 4.2 times of inner the pile diameter respectively. And the other the piles were welded 2 steel ring. The filling of the cement milk was an equal method as before(SIG-2 and RJP-2). Also the strain gauges were installed and the static pile load tests were done at the piles all. As a result, list in great order for effect of soil plug was (1)SIG-1, (2)SIG-2, (3)RJP-1, (4)RJP-2. This is because of strength and filling height of cement milk. And the higher the strength is, the greater the confining coefficient is.

  • PDF

Prediction of Ultimate Load of Drilled Shafts Embedded in Weathered Rock by Extrapolation Method (외삽법을 이용한 풍화암에 근입된 현장타설말뚝의 극한하중 예측)

  • Jung, Sung Jun;Lee, Sang In;Jeon, Jong Woo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.145-151
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the ultimate load of the pile is attained. If a reliable ultimate load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a method for judging the reliability of the ultimate load of piles that is obtained from extrapolated load test data. To this aim, ten static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the ultimate capacity was re-determined for each extrapolated data by the Davisson method (1972). Statistical analysis was performed on the reliability of the re-evaluated ultimate loads. The results showed that if the ratio of the maximum-available displacement to the predicted displacement exceeds 0.6, the extrapolated ultimate load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed method of judgment was also verified with static load test data of driven piles.

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

A Case Study of PHC Pile Behavior Characteristics on Dynamic Compacted High Rock Embankment (고성토 암버력 동다짐 지반에 시공된 PHC 말뚝의 거동특성 사례연구)

  • Yu, Nam-Jae;Yun, Dong-Kyun;Bae, Kyung-Tae;Kim, Hyung-Suk;Lee, Dal-Ho;Park, Yong-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.519-526
    • /
    • 2010
  • The construction site for $\bigcirc\bigcirc$ transformer substation was located at a mountain valley. In order to prepare the site, the valley was first filled with crushed rock debris up to 63m. Since the main concern of this project is to minimize differential settlement of the foundation of transformer facilities, dynamic compaction was performed every 7m followed by reinforcement with EMP(Ez-Mud Piling). The EMP is one of bored piling methods, in which a hole is bored by means of air percussion and maintain by injecting Ez-Mud. Then a PHC pile (Pretensioned spun High strength Concrete pile) is embedded and finalized with a hammer. In this study, bearing capacities and long term behavior of a pile installed by EMP were investigated. To achieve these objectives, a series of tests such as static and dynamic load tests were conducted. In addition, a construction quality control standard was proposed based on the test results.

  • PDF

Driveability Analysis of Driven Steel Tublar Piles (타입 강관말뚝의 항타관입성 분석)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.123-132
    • /
    • 2003
  • The final purpose of driveability analysis is to confirm whether a selected hammer drives a pile to a desired penetration depth and/or capacity without damage. The capacities from static analysis methods are meaningless if the pile cannot be driven to the required design depth and the ultimate capacity without damage. It often occurs that there are big differences between the capacities from measurements and calculations. It may be because the driveability is not evaluated due to the lack of engineers' understanding of the driveability of pile driving. The engineers in the field sometimes assume simply the penetration depth with standard penetration value only. In this study some test pilings with dynamic pile loading tests were performed to give an understanding about the driveability. The influence factors(driving resistance, impedance, material strength, hammer) on the driveability of steel piles were analysed with the monitoring data obtained from the dynamic load tests. It was shown that more cost-effective design can be made in case the driveability analysis and high strength steel pile are appropriately adopted in the design.

Design Efficiency Improvement Method Research for High Strength Steel Pipe Pile at Gwangyang Area (광양지역 고강도 강관 항타말뚝의 설계효율 향상 방안 연구)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.231-240
    • /
    • 2011
  • Various pile load tests were carried out at Gwangyang district for 10 different piles in order to analyze the characteristcs of steel pile using high strength steel and high driving energy. Pile drivability results showed that PHC piles needed highest total blow count even with the shortest pile length and high strength steel pipe piles showed smallest total blow count eventhough driven to a more hard ground condition with longer pile length. Pile dynamic analysis results showed that for PHC pile and general steel pipe pile the allowable pile design load was decided by the allowable material strength but for high strength steel pipe pile the design load can be decided according to the ground bearing capacity. Static load test and load transfer test results showed that the pile design efficiency could be improved over 80% allowing lesser number of piles necessary for a more economical solution. Set-up effects was analyzed and regression equation for the site ground condition was derived. Bearing capacity was checked with widely used design equation and the limitation of current design method and future technology development on this subject is dicussed in this paper.

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

A Study on the Stability of Group Piles Installed in the Deep Sea to the Seaquake (해진에 대한, 심해에 설치된 군말뚝의 안정성에 관한 연구)

  • 최용규;남문석;정두환
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.31-42
    • /
    • 2000
  • In this study, the stability of group piles installed in deep sea to the seaquake was studied by performing the calibration chamber model tests for open-ended pipe piles, grouted piles under soil plug and close-ended piles installed in the simulated deep sea. For each case (a single pile, 2-pile and 4-pile groups), series of seaquake tests were performed. While, during the simulated seaquake, the compressive capacity of the single open-ended pile depended on pile penetration depth(=7m), were found to be stable. But, a single grouted pile with penetration depth of 13m kept "mobility" state, the one with penetration depth of 20m was stable and grouted pile groups with penetration depth of 7m were stable regardless of pile penetration depth. By grouting soil plug of open-ended piles and soil under the pile toe of open-ended pipe piles installed in the deep sea, failure of soil plugging was prevented. Thus, close-ended piles were more stable than open-ended pile against the seaquake motionake motion.

  • PDF

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이 기구)

  • Kwon, Oh-Sung;Cho, Sung-Min;Jung, Sung-Jun;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.57-64
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of the rock socketed pile should be well known. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanisms of drilled shaft socketed into weathered rock was investigated. For that, 5 cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the field test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The side shear resistance of the pile in moderately weathered rock reached to yielding point at a few millimeter displacements, and after that, the rate of resistance increment dramatically decreased. However, that in the highly /completely weathered rock did not show the obvious yielding point, and gradually increased showing the hyperbolic pattern until with the relatively high displacement (>10 mm). The end bearing-displacement curves showed linear increase at least until with the base displacement of approximately 10 mm, regardless rock mass conditions.

  • PDF

Analysis of Plugging Effect for Open-ended Piles Based on Field Tests (현장시험을 통한 개단말뚝의 폐색효과에 대한 연구)

  • Ko, Jun-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.51-61
    • /
    • 2014
  • This paper presents an experimental study of the plugging effect on the capacity of open-ended piles installed in sandy soil. Full-scale tests, including dynamic and static axial-compression load tests, were carried out on three instrumented piles with different diameters (508.0, 711.2 and 914.4 mm). To measure the outer and inner shaft resistances acting on the piles, a double-walled system was utilized with instrumented strain gauges on the outside and inside walls of the pile. The results of field tests show that the inner shaft resistance was mostly mobilized at the location between the pile tip and 18-34% of the total plug length. It was found that the soil plugging in the lower portion has influence on the inner shaft resistance. In addition, it can be also demonstrated that the ratio of inner shaft resistance plus annulus load resistance to total resistance decreased with increasing pile diameters. The results of these tests show that the relationship between the degree of plugging and pile diameter is clearly established. Direct observations of the soil plugs were made and used to quantify both the plug length ratio (PLR) and the incremental filling ratio (IFR). Based on this result, it was found that the N value of the standard penetration test (SPT) is highly correlated with the IFR.