• Title/Summary/Keyword: Static performance

Search Result 2,833, Processing Time 0.027 seconds

A Study on the Static Performance Test of a Reciprocating Engine for Small Aircraft (소형항공기용 왕복엔진의 정적 성능시험 연구)

  • 김근배;안석민;김근택;최선우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.53-60
    • /
    • 2003
  • A test stand was developed to measure static performance of a reciprocating engine on the ground, related to the small aircraft being developed by KARI. The test stand consists of an apparatus to install and operate a pusher-type propulsion system and a data acquisition system to process many performance parameters including engine torque and propeller thrust as well as monitoring of the engine operations. First, the performance data from the basic operation tests were compared with the original engine data so the capacity of the test stand was verified. Engine performance tests were carried out with various test conditions through three stages, and it was measured and analyzed that the manifold pressure, the torque, and the back pressure of the engine, and the static thrust of the propeller.

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

Effective Combination of Temporal Information and Linear Transformation of Feature Vector in Speaker Verification (화자확인에서 특징벡터의 순시 정보와 선형 변환의 효과적인 적용)

  • Seo, Chang-Woo;Zhao, Mei-Hua;Lim, Young-Hwan;Jeon, Sung-Chae
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.127-132
    • /
    • 2009
  • The feature vectors which are used in conventional speaker recognition (SR) systems may have many correlations between their neighbors. To improve the performance of the SR, many researchers adopted linear transformation method like principal component analysis (PCA). In general, the linear transformation of the feature vectors is based on concatenated form of the static features and their dynamic features. However, the linear transformation which based on both the static features and their dynamic features is more complex than that based on the static features alone due to the high order of the features. To overcome these problems, we propose an efficient method that applies linear transformation and temporal information of the features to reduce complexity and improve the performance in speaker verification (SV). The proposed method first performs a linear transformation by PCA coefficients. The delta parameters for temporal information are then obtained from the transformed features. The proposed method only requires 1/4 in the size of the covariance matrix compared with adding the static and their dynamic features for PCA coefficients. Also, the delta parameters are extracted from the linearly transformed features after the reduction of dimension in the static features. Compared with the PCA and conventional methods in terms of equal error rate (EER) in SV, the proposed method shows better performance while requiring less storage space and complexity.

  • PDF

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

Seismic performance evaluation for steel MRF: non linear dynamic and static analyses

  • Calderoni, B.;Rinaldi, Z.
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.113-128
    • /
    • 2002
  • The performance of steel MRF with rigid connections, proportioned by adopting different capacity design criteria, is evaluated in order to highlight the effectiveness of static non-linear procedure in predicting the structural seismic behavior. In the framework of the performance-based design, some considerations are made on the basis of the results obtained by both dynamic time histories and push-over analyses, particularly with reference to the damage level and the structure ability to withstand a strong earthquake.

Performance Evaluation Methods of Reinforced Concrete Structures using Nonlinear Static Analysis (비선형 정적해석을 이용한 철근 콘크리트 구조물 성능평가기법)

  • Yun, Sung-Hwan;Park, Tae-Hyo;Lee, Do-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.373-376
    • /
    • 2006
  • There are representative two performance evaluation methods for performance-based design(PBD) of reinforced concrete structures by the nonlinear static analysis, one method includes the capacity spectrum method(CSM) suggested in ATC-40(996) and the other is the displacement coefficient method(DCM) in FEMA-273(1997). The objective of this paper is to compare and verify two methods and suggest the displacement-based design for new performance evaluation of reinforced concrete structures.

  • PDF

Seismic Performance Evaluation of a School Gymnasium Using Static Anlysis (정적해석에 의한 학교 체육관의 내진 성능 평가)

  • Morooka, Shigehiro;Tsuda, Seita;Ohsaki, Makoto
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.49-59
    • /
    • 2009
  • The seismic responses of small-scale spatial frames such as school gymnasiums are usually evaluated using static analysis, although time-history analysis should be carried out to fully incorporate the dynamic responses of the structures against seismic motions. In this study, advanced static analysis procedures arc presented for school gymnasiums that will improve the performance evaluation against seismic motions. The seismic loads are approximated by equivalent static loads corresponding to the two performance levels; i.e., Levels 1 and 2 defined by the Japanese building standard. The importance of utilizing the eigenmode in the load pattern is discussed. Simple static analysis procedures are presented for evaluation of maximum vertical acceleration. It is shown that the static analysis for Level 2 input significantly underestimates the responses by dynamic analysis; however, the inelastic responses for Level 2 are shown to be successfully evaluated using the equivalent linearization that is similar to the $^{\circ}$Dmethod based on calculation of limit strength$^{\circ}{\pm}$ for building frames in Japan.

  • PDF

Assessment of acoustic detection performance for a deployment of bi-static sonar (양상태 소나 배치를 위한 음향탐지성능 평가 방법)

  • Son, Su-Uk;Kim, Won-Ki;Bae, Ho Seuk;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.419-425
    • /
    • 2022
  • This paper aims to evaluate the acoustic detection performance for the deployment of the source and receiver positions of a bi-static sonar. In contrast with a mono-static sonar, a bi-static sonar has a large amount of computation and complexity for deployment. Therefore, in this study, we propose an assessment method that reduces the amount of computation while considering the variability of the ocean environment as a method to apply to the placement of the source and receiver of a bi-static sonar. First, we assume the representative ocean environment in the shallow and deep water. The signal excess is calculated with the source to receiver ranges and sensor depths. And the result is compared with the proposed assessment method of acoustic detection performance.

The Effect of Dimensions and Location of Oil Grooves on the Static Performance of a Cylindrical Journal Bearing (급유홈의 크기와 위치가 원통형 저널 베어링의 정적성능에 미치는 영향)

  • Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.209-218
    • /
    • 2010
  • In this study, the effect of dimensions and location of oil grooves on the static performance of a cylindrical journal bearing is analyzed numerically. Axial length, circumferential length and location of oil grooves are considered as parameters. Cavitation occurs within the diverging region of a journal bearing. The distribution of cavitation region where cavitation occurs varies with dimensions and location of oil grooves and affects the performance of a journal bearing. Elrod's cavitation algorithm which implements JFO boundary conditions based on the principle of mass conservation at the interfaces between cavitation and full film region is adopted in order to consider the effect of cavitation. The result shows that parameters, especially location of oil grooves have a great effect on the static performance of a journal bearing.