• Title/Summary/Keyword: Static mode

Search Result 785, Processing Time 0.607 seconds

An On-chip ESD Protection Method for Preventing Current Crowding on a Guard-ring Structure (가드링 구조에서 전류 과밀 현상 억제를 위한 온-칩 정전기 보호 방법)

  • Song, Jong-Kyu;Jang, Chang-Soo;Jung, Won-Young;Song, In-Chae;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.105-112
    • /
    • 2009
  • In this paper, we investigated abnormal ESD failure on guard-rings in the smart power IC fabricated with $0.35{\mu}m$ Bipolar-CMOS-DMOS (BCD) technology. Initially, ESD failure occurred below 200 V in the Machine Model (MM) test due to current crowding in the parasitic diode associated with the guard-rings which are generally adopted to prevent latch-up in high voltage devices. Optical Beam Induced Resistance Charge (OBIRCH) and Scanning Electronic Microscope (SEM) were used to find the failure spot and 3-D TCAD was used to verify cause of failure. According to the simulation results, excessive current flows at the comer of the guard-ring isolated by Local Oxidation of Silicon (LOCOS) in the ESD event. Eventually, the ESD failure occurs at that comer of the guard-ring. The modified comer design of the guard-ring is proposed to resolve such ESD failure. The test chips designed by the proposed modification passed MM test over 200 V. Analyzing the test chips statistically, ESD immunity was increased over 20 % in MM mode test. In order to avoid such ESD failure, the automatic method to check the weak point in the guard-ring is also proposed by modifying the Design Rule Check (DRC) used in BCD technology. This DRC was used to check other similar products and 24 errors were found. After correcting the errors, the measured ESD level fulfilled the general industry specification such as HBM 2000 V and MM 200V.

Seismic Analysis of RC Subway Station Structures Using Finite Element Method (유한요소법을 이용한 철근콘크리트 지하철 정거장 구조물의 내진 해석)

  • Nam, Sang-Hyeok;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.225-233
    • /
    • 2003
  • Even though a lot of advanced researches on analysis, design, and performance evaluation of reinforced concrete (RC) under seismic action have been carried out, there has been only a few study on seismic analysis of underground RC structures surrounding soil medium. Since the underground RC structures interact with surrounding soil medium, a path-dependent soil model which can predict the soil response is necessary for analyzing behavior of the structure inside soil medium. The behavior of interfacial zone between the RC structure and the surrounding medium should be also considered for more accurate seismic analysis of the RC structure. In this paper, an averaged constitutive model of concrete and reinforcing bars for RC structure and path-dependent Ohsaki's model for soil are applied, and an elasto-plastic interface model having thickness is proposed for seismic analysis of underground RC structures. A finite element analysis technique is developed by applying aforementioned constitutive equations and is verified by predicting both static and dynamic behaviors of RC structures. Then, failure mechanisms of underground RC structure under seismic action are numerically derived through seismic analysis of underground RC station structure under different seismic forces. Finally, the changes of failure mode and the damage level of the structures are also analytically derived for different design cases of underground RC structures.

In vitro study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses

  • Choi, Jae-Won;Kim, So-Yeun;Bae, Ji-Hyeon;Bae, Eun-Bin;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • PURPOSE. The purpose of this study was to determine fracture resistance and failure modes of three-unit fixed dental prostheses (FDPs) made of lithium disilicate pressed on zirconia (LZ), monolithic lithium disilicate (ML), and monolithic zirconia (MZ). MATERIALS AND METHODS. Co-Cr alloy three-unit metal FDPs model with maxillary first premolar and first molar abutments was fabricated. Three different FDPs groups, LZ, ML, and MZ, were prepared (n = 5 per group). The three-unit FDPs designs were identical for all specimens and cemented with resin cement on the prepared metal model. The region of pontic in FDPs was given 50,000 times of cyclic preloading at 2 Hz via dental chewing simulator and received a static load until fracture with universal testing machine fixed at $10^{\circ}$. The fracture resistance and mode of failure were recorded. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni's correction (${\alpha}=0.05/3=0.017$). RESULTS. A significant difference in fracture resistance was found between LZ ($4943.87{\pm}1243.70N$) and ML ($2872.61{\pm}658.78N$) groups, as well as between ML and MZ ($4948.02{\pm}974.51N$) groups (P<.05), but no significant difference was found between LZ and MZ groups (P>.05). With regard to fracture pattern, there were three cases of veneer chipping and two interfacial fractures in LZ group, and complete fracture was observed in all the specimens of ML and MZ groups. CONCLUSION. Compared to monolithic lithium disilicate FDPs, monolithic zirconia FDPs and lithium disilicate glass ceramics pressed on zirconia-based FDPs showed superior fracture resistance while they manifested comparable fracture resistances.

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.

Study on Transport Policy Assessment Using the Integrated Land Use Transport Model (통합 토지이용 교통모형을 이용한 교통정책평가에 관한 연구 I: 기존사례연구를 중심으로)

  • Lee, Seung-Jae;Sohn, Jhi-Eon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2010
  • The policy which encourages people to use cars on the road has been based on the growth of economy in Korea. It has also caused the concentration and overcrowding in Seoul. That's because the increasing number of people possessing cars interconnects with the urban development. The transportation is a derived demand; so many scholars have recognized the importance of understanding the relationship between urban land use and transport. Considering such importance, this study theoretically compared the developed urban land use-transportation models each other and outlined the particular models briefly. Models were categorized by 2 types; optimizing model and predictive mode. Predictive model is also defined by static model, entropy based model, spatial-economic model, and activity model. After studying models, we investigated other major cities in America. This process is the pre-step for transport policy assessment. Through careful literature review, we can finally develop the integrated land-use transportation model in Seoul metropolitan area. In addition, we will be able to deal the changes of traffic demand pattern under U-Society. Consequently, the results of this study can be applied to ITS projects in the future.

Production of Bacterial Cellulose by Pilot Scale and Its Properties (Pilot Scale의 박테리아 셀룰로오스 생산 및 그의 물성)

  • Kim, Seong-Jun;Song, Hyo-Jeong;Chang, Mi-Hwa;Choi, Chang-Nam
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The saccharogenic liquid (SFW) obtained by the enzymatic saccharification of food wastes was used as a medium for production of bacterial cellulose (BC). The enzymatic saccharification of food wastes was carried out by the cultivation supernatant of Tricoderma inhamatum KSJ1 culture. Acetobacter xylinum KJ1 was employed for the BC production culture. Under the scaled-up aeration condition of 1.0 vvm, 5.64 g/L of BC was produced in 3 days cultivation in 50 L air circulation bioreactor using SFW medium with addition of 0.4% agar. The productivity was similar to that of 10 L air circulation bioreactor (5.84 g/L). This cultivation method with 50 L air circulation bioreactor decreasing shear stress and increasing oxygen transfer coefficient ($k_La$) was very useful in BC mass production. The physical properties, such as morphology, molecular weight, crystallinity, and tensile strength of BC produced by the static culture (A), the air circulation culture using 10 L bioreactor (B) and 50 L bioreactor (C) were investigated. The number average molecular weight of BCs produced under the different culture conditions (A-C) showed 2,578,000, 1,975,000, and 1,809,000, respectively. Tensile strength was 1.72 $kg/mm^2$, 1.19 $kg/mm^2$, and 1.18 $kg/mm^2$, respectively. All of the BCs had a form of cellulose I representing pure cellulose. The relative degree of crystallinity showed the range of 86.2$\sim$87.8%. BC production by the air circulation culture mode brought more favorable results in terms of the physical properties and its ease of scale-up. Therefore, it is expected that the new BC production method, the air circulation culture using SFW, would contribute greatly to BC-related manufacturing.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line (섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구)

  • Park, Sung Min;Lee, Seung Jae;Kang, Soo Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.