• Title/Summary/Keyword: Static equilibrium

Search Result 309, Processing Time 0.029 seconds

Static equilibrium and linear vibration analysis of a high speed electric train system (고속전철 시스템의 정적평형 및 선형진동 해석)

  • 김종인;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix. The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power car vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the two are identified in this paper.

  • PDF

The Effects of Elastic Resistance Exercise of Limbo-Pelvic region and upper Limbs Muscle on Equilibrium Ability and Shoulder Pain of the Elderly (요골반부와 상지근육에 대한 탄성저항 운동이 노인들의 균형능력 및 어깨통증에 미치는 영향)

  • Kim, Sang-Su;Gong, Won-Tae
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • Purpose : To evaluate the effects of elastic resistance exercise of lumbo-pelvic region and upper limbs muscle on equilibrium ability and shoulder pain of the elderly. Methods : The subject consisted of sixteen healthy elderly people(14 females. 2 males). They were from 61 to 83 years old and the mean age was 68.06. All subjects were assigned only the elastic resistance exercise group. The subject group received elastic resistance exercise for about 60 minutes per day, two times per weeks, during 8 weeks period. A Stop watch was used to measure static equilibrium ability and dynamic equilibrium ability and then pressure algometer was used to measure shoulder press pain threshold. All measurements of each subjects were measured at pre-experiment and post-experiment stage. SPSS 12.0 program was used to compile results. A Paired samples t-test was conducted to examine changes of static equilibrium, dynamic equilibrium and shoulder press pain threshold between pre-experiment and post-experiment. Results : The static equilibrium ability, dynamic equilibrium ability and shoulder press pain threshold were significantly differences between pre-experiment and post-experiment(p<.05). Conclusion : This data suggests that an eight week elastic resistance exercise improved static equilibrium ability and dynamic equilibrium ability and then reduced shoulder pain.

  • PDF

Static equilibrium and linear vibration analysis of a high speed electric train system (고속 전철 시스템의 정적 평형 및 선형 진동 해석)

  • 김종인;유홍희;황요하
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.305-312
    • /
    • 1998
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix, The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the three are identified in this paper.

  • PDF

An Optimization Algorithm to Compute Pre-Loads of the Given Static Equilibrium State in Train Dynamics (열차동역학에서 주어진 정적평형상태의 초기하중을 계산하기 위한 최적화 알고리즘)

  • 김종인;박정훈;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.9-17
    • /
    • 1999
  • This paper presents a new algorithm to determine the pre-loads that sustain the static equilibrium state in a given position. The algorithm which uses a partial velocity matrix leads to an unconstrained optimization problem to compute the pre-loads of the suspensions. To demonstrate the validity of the proposed algorithm, the static analysis results that employ the pre-loads of three examples are presented using a reliable commercial program. Results of the analysis confirm the validity of the proposed algorithm.

  • PDF

A Study on the Analysis of Multi-let Spread Mooring Systems (다점지지 계류시스템의 정적해석에 대한 연구)

  • Sin, Hyeon-Gyeong;Kim, Deok-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

A constant tendon moment arms finger model in the sagittal plane

  • Lee, K.H.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.46-53
    • /
    • 1992
  • Finger movements in the sagittal plane mainly consist of flexion and extension about the metacarpophalangeal(MCP) and proximal interphalangeal(PIP) joints. A kinematic finger model was developed with the assumption of constant tendon moment arms. Equations of static equilibrium were derived for the finger model using the principle of virtual work. Equations of static equilibrium for the finger model were indeterminate since only three equations were available for five unknown variables(forces). The number of variables was reduced based on information on muscular activities in finger movements. Then the amounts of forces which muscles exerted to maintain static equilibrium against external loads were computed from the equilibrium equations. The muscular forces were expressed mathematically as functions of finger positions, tendon moment arms, lengths of phalanges, and the magnitude and direction of external load. The external finger strength were computed using the equations of muscular forces and anatomical data. Experiments were performed to measure finger strengths. Measurements were taken in combinations of four finger positions and four directions of force exertions. Validation of the finger models and of procedure to estimate finger strengths was done by comparing the results of computations and experiments. Significang differences were found between the predicted and measured finger strengths. However, the trends of finger strengths with respect to finger positions were similar inboth the predicted and measured. These findings indicate that the finger model and the procedure to predict finger strengths were correctly developed.

  • PDF

Desorption Equilibrium Moisture Content of Rough Rice , Brown Rice, White Rice and Rice Hull (벼, 현미, 백미 및 왕겨의 방습평형함수율)

  • Keum, D. H.;Kim, H.;Cho, Y. K.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • This study was performed to determine desorption equilibrium moisture contents of rough rice, brown rice, white rice and rice hull grown in Korea. EMC values were measured by static method using saturated salt solutions at three temperature levels of 2$0^{\circ}C$, 3$0^{\circ}C$ and 4$0^{\circ}C$ and eight relative humidity levels in the range from 11.2% to 85.0%. The measured EMC values were fitted to modified Henderson, Chung-Pfost , and modified Oswin models by using nonlinear regression analysis. The results of comparing root mean square errors for three models showed that modified Henderson and CHung -Pfost models could serve as good models, and that modified Oswin model could not be available for rough rice, brown rice, white rice and rice hull.

  • PDF

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.