• 제목/요약/키워드: Static and Dynamic Behavior

검색결과 726건 처리시간 0.026초

압축된 고무재료의 정적 변형 해석과 동특성 예측 (Static Deformation Analysis and Dynamic Characteristics Predicton of Compressed Rubber Materials)

  • 김국원;임종락;손희기;안태길
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.472-476
    • /
    • 1999
  • The effect of static preload on the dynamic properties of rubber materials is rather important, especially when good isolation characteristics are required at high frequencies. However, there are still few papers for dynamic characteristics of compressed rubber components. It was demonstrated in reference (4) that for bonded rubber material of a cylindrical shape, a simplified theory equation between linear dynamic and nonlinear static behavior of rubber material was useful to predict their combined effects. This paper presents the second part of the study. It is confirmed that for the compressed rubber material, the stress can be factored into a function of frequency and a function of strain(stretch). The finite element methodis applied to analyze non-linear large deformation of rubber material and its results are compared with those of a simplified theory equation. The predicted dynamic material properties based on non-linear static finite element analyses have a good agreement of experimental results and those based on simplified theory equation.

  • PDF

베어링특성에 따른 HSK 공구시스템의 정적 및 동적 거동의 유한요소해석 (An Analysis of Static and Dynamic Behavior of the HSK Tooling System According to Bearing Characteristics)

  • 박진효;김정석;구민수;강익수;김기태
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.346-352
    • /
    • 2010
  • Recently, the high-tech industries, such as the aerospace industry, the auto industry, and the electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, static and dynamic behavior of the HSK tooling System is analyzed according to bearing characteristics and lightweight parts. In order that, three different models of the HSK tooling system are modelled by using a 3D modeling/design program. More stable one in the models of HSK tooling system can be selected by using the FEA(Finite Element Analysis).

A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading

  • Liu, Huabei;Yang, Guangqing;Wang, He;Xiong, Baolin
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.579-593
    • /
    • 2017
  • Geosynthetic reinforced soil retaining walls can be employed as railway embankments to carry large static and dynamic train loads, but very few studies can be found in the literature that investigate their dynamic behavior under simulated wheel loading. A large-scale dynamic test on a reinforced soil railway embankment was therefore carried out. The model embankment was 1.65 meter high and designed to have a soilbag facing. It was reinforced with HDPE geogrid layers at a vertical spacing of 0.3 m and a length of 2 m. The dynamic test consisted of 1.2 million cycles of harmonic dynamic loading with three different load levels and four different exciting frequencies. Before the dynamic loading test, a static test was also carried out to understand the general behavior of the embankment behavior. The study indicated the importance of loading frequency on the dynamic response of reinforced soil railway embankment. It also showed that toe resistance played a significant role in the dynamic behavior of the embankment. Some limitations of the test were also discussed.

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

스프링-매스-빔 모델을 이용한 유연매체의 정.동적 거동해석 (Static and Dynamic Analysis of Flexible Media Using Spring-Mass-Beam Model)

  • 지중근;정진우;홍성권;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.906-911
    • /
    • 2004
  • In the development of sheet-handling machinery, it is important to be able to predict the italic and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. In this paper, a spring-mass-beam model is introduced. This model consists of rotational springs, shear springs and masses. The formulations for static and dynamic behavior of sheets are introduced. And some simulations are presented for static and dynamic cases.

  • PDF

원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가 (Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests)

  • 유민택;권선용
    • 한국지반공학회논문집
    • /
    • 제34권7호
    • /
    • pp.51-58
    • /
    • 2018
  • 본 연구에서는 하중 조건에 따른 지반-말뚝 상호작용 시스템의 거동 차이를 분석하기 위해 일련의 원심모형 실험을 수행하였다. 정적 하중 조건의 경우, 말뚝 직경의 50% 수준까지 변위제어를 통해 하중을 재하하였으며, 지진 하중 조건의 경우 0.1g~0.4g 수준으로 1Hz 정현파를 가진하였다. 실험 결과로부터 얻은 정적 및 동적 p-y 곡선을 API p-y 곡선과 비교한 결과, API p-y 곡선과 정적 하중조건에서의 실험 p-y 곡선은 최대 지반반력 값이 20% 이내의 오차를 보인 반면, 동적 하중 조건에서의 실험 p-y 곡선과는 최대 지반반력 값이 5배 이상 차이가 발생하였다. 이는 등가정적 해석에서 기존 API p-y 곡선을 적용할 경우 비선형 영역에서 지반 반력을 크게 과소평가하며 보수적 설계를 야기할 수 있음을 의미한다.

Seismic behavior factors of buckling-restrained braced frames

  • Kim, Jinkoo;Park, Junhee;Kim, Sang-Dae
    • Structural Engineering and Mechanics
    • /
    • 제33권3호
    • /
    • pp.261-284
    • /
    • 2009
  • The seismic behavior of a framed structure with chevron-type buckling restrained braces was investigated and their behavior factors, such as overstrength, ductility, and response modification factors, were evaluated. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2003, the AISC LRFD and the AISC Seismic Provisions. Nonlinear static pushover analyses using two different loading patterns and incremental dynamic analysis using 20 earthquake records were carried out to compute behavior factors. Time history analyses were also conducted with another 20 earthquakes to obtain dynamic responses. According to the analysis results, the response modification factors turned out to be larger than what is proposed in the provision in low-rise structures, and a little smaller than the code-values in the medium-rise structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.

A FEM Analysis of Dynamic Behavior for a Slider with Ultra-Thin Air-Film

  • Lim, S.K.;Rhim, Y.C.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.243-244
    • /
    • 2002
  • New type slider with optical components is coming on market for portable and high capacity drive, and it shows great potential in future high performance drive. It is very important that a slider should have a good dynamic behavior. In this paper the dynamic behavior and static characteristics of slider have been investigated numerically by in-house simulation code using FEM.

  • PDF

콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구 (Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites)

  • Kim, M.S.;Lee, H.C.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF