• 제목/요약/키워드: Static Strength Analysis

검색결과 646건 처리시간 0.029초

내부 환보강 X형 관이음부의 강도산정식 (Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints)

  • 조현만;류연선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF

Static Load Analysis of Twin-screw Kneaders

  • Wei, Jing;Zhang, Guang-Hui;Zhang, Qi;Kim, Jun-Seong;Lyu, Sung-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.59-63
    • /
    • 2008
  • A static load analysis of twin-screw kneaders is required not only for the dynamic analysis, but also because it is the basis of the stiffness and strength calculations that are essential for the design of bearings. In this paper, the static loads of twin-screw kneaders are analyzed, and a mathematical model of the force and torque moments is presented using a numerical integration method based on differential geometry theory. The calculations of the force and torque moments of the twin-screw kneader are given. The results show that the $M_x$ and $M_y$ components of the fluid resistance torque of the rotors change periodically in each rotation cycle, but the $M_z$ component remains constant. The axis forces $F_z$ in the female and male rotors are also constant. The static load calculated by the proposed method tends to be conservative compared to traditional methods. The proposed method not only meets the static load analysis requirements for twin-screw kneaders, but can also be used as a static load analysis method for screw pumps and screw compressors.

유체-구조 연계 해석을 위한 보간 기법 연구 (A STUDY ON THE INTERPOLATION METHODS FOR THE FLUID-STRUCTURE INTERACTION ANALYSIS)

  • 이재훈;권장혁
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.41-48
    • /
    • 2008
  • The fluid-structure interaction analysis such as a static aeroelastic analysis requires the result of each analysis as an input to the other analysis. Usually the grids for the fluid analysis and the structural analysis are different, so the results should be transformed properly for each other. The Infinite Plate Spline(IPS) and the Thin Plate Spline(TPS) are used in interpolating the displacement and the pressure. In this study, such interpolation methods are compared with kriging which provides a precise response surface. The static aeroelastic analysis is performed for the supersonic flow field with shock waves and the pressure field is interpolated by the TPS and kriging. The TPS shows tendency to weaken the shock strength, whereas kriging preserves the shock strength.

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

환보강 X형 관이음부의 정적강도에 관한 수치적 연구 (A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener)

  • 류연선;조현만
    • 한국전산구조공학회논문집
    • /
    • 제18권3호
    • /
    • pp.265-275
    • /
    • 2005
  • 본 논문의 목적은 내부환보강 X형 관이음부의 거동을 수치적으로 평가하여 환보강재의 보강효과를 규명하고, 강도 산정식을 제안하는 것이다. 축방향력을 받는 관이음부의 정적강도를 산정하기 위해 비선형 유한요소해석을 수행하였다 유한요소해석 결과는 실험결과와 잘 일치하였고, X형 관이음부의 주부재 단부효과를 감소시킬 수 있는 주부재의 적정길이를 제시하였다. 내부 환보강재는 단순 X형 관이음부의 정적강도를 증가시키는데 효율적임이 판명되었고, 최대 보강효과를 나타내는 최대강도비가 1.5에서 3까지 산정되었다. 환보강재의 실용적 크기를 고려한 이음부에 대해 유한요소해석 결과를 이용하여 회귀분석을 실시하고 내부 환보강 X형 관이음부의 강도산정식을 제안하였다.

틸팅열차용 주행장치 프레임에 대한 피로강도평가를 위한 해석 및 시험적 연구 (Experimental and Analytical Study on Fatigue Strength Evaluation for the Bogie Frame of Tilting Railway Vehicles)

  • 김정석;김남포;고태환
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.97-104
    • /
    • 2006
  • This paper has investigated the strength of the bogie frame for the Korean tilting train that is being developed in KRRI. In this study, the loading conditions imposed on the bogie frame of tilting train were derived and the static and fatigue strength of the bogie frame has been evaluated. In order to achieve these goals, finite element analysis has been performed and the stress concentration areas were investigated. Based on the analytical results, the static load tests were conducted under the nontilting load conditions and the tilting load conditions. The test results were used to evaluate the fatigue strength of the bogie frame by Goodman diagram.

피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구 (An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load)

  • 채원규
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF

동력차용 대차프레임의 피로강도평가 (Fatigue Strength Evaluation of Bogie Frame for Power Car)

  • 이학주;한승우;;이상록
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측 (Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test)

  • 전지훈;손영환;김태진;조상범;정승주;허준;봉태호;김동근
    • 한국농공학회논문집
    • /
    • 제65권5호
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.