• Title/Summary/Keyword: Static Ring

Search Result 114, Processing Time 0.026 seconds

The Crystal Structure of a Sulfur Sorption Complex of the Dehydrated Partially $Co^{2+}$-Exchanged Zeolite A

  • 염영훈;송성환;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.823-826
    • /
    • 1995
  • The crystal structure of a sulfur sorption complex of the dehydrated partially Co2+ exchanged zeolite A (a=12.058(2) Å) has been determined by single-crystal X-ray techniques. The crystal structure was solved and refined in cubic space group Pm3m at 21(1) ℃. Ion Exchange with aqueous 0.05 M Co(NO3)2 was done by the static method. The crystal of Na4Co4-A was dehydrated at 380 ℃ and 2 × 10-6 Torr for 2 days, followed by exposure to about 100 Torr of sulfur at 330 ℃ for 72 h. Full matrix least-squares refinement converged to R1=0.084 and Rw=0.074 with 102 reflections for which I > 3σ(I). Crystallographic analysis shows that 2.8 Co2+ ions and 4 Na+ ions per unit cell occupy 6-ring sites on the threefold axes. 1.2 Co2+ ions occupy the 8-ring sites on fourfold axes. 2.8 Co2+ ions at Co(1) are recessed 0.66 Å into the large cavity and 4 Na+ ion at Na(1) are recessed 0.77 Å into the sodalite cavity from the (111) plane of O(3)'s. Approximately 16 sulfur atoms were sorbed per unit cell. Two S8 rings, each in a butterfly form, are found in the large cavity. The bond length between S and its adjacent S is 2.27(3) Å. The distance between 6-ring Co2+ ion and its adjacent sulfur is 2.53 (2) Å and that between 8-ring Co2+ ions and its adjacent sulfur is 2.72(9) Å. The angles of S-S'-S and S'-S-S'/ in octasulfur rings are 119.0(2)°and 113.0(2)°, respectively.

Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas (구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Kim, Hyo-Tae;Yun, Ji-Hyeon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.68-76
    • /
    • 2022
  • The purpose of this paper was to design the cable networks for mesh reflector antennas, considering the flexibility of structures. An effective form-find methodology is proposed. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. Additionally, nonlinear deformation of the cable can be obtained. The form-finding analysis of the reflector with standard configuration is performed, to validate the proposed methodology. The truss ring structure is numerically modeled using the frame elements. To consider the flexibility of the truss ring as well as the cable net structure, an iteration analysis between the truss ring and the cable net under tensional forces is also performed in the form-finding process. The finial configuration of the reflector with tensioned cable networks is demonstrated.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on an Elastic Foundation - With Application to the Nuclear Reinforced Concrete Containment Structures- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(I) -철근 콘크리트 원자로 격납 건물을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • This is a basic study for the static and dynamic analysis on the elasto-plastic and elasto-viscoplastic of an axi-symmetric shell. The objective of this study was to investigate the mechanical characteristics of a nuclear reinforced concrete containment structure, which was selected as a model, by a numerical analysis using a finite element method. The structure was modeled with discrete ring elements of 8-noded isoparametric element rotating against the symmetrical axis, and the interaction between the foundation and the structure was modeled by Winkler's model. Also, the meridional tendon was modeled with 2-node truss elements, and the hoop tendon was done with point elements in two degrees of freedom. The effect of the tendon was considered without the increasement in total degree of freedom as the stiffness matrix of modeled tendon elements was assembled on the stiffness matrix of ring elements linked with the tendon. The results obtained from the analysis of an example were summarized as follows : 1. The stresses in the hoop direction on the interior and exterior surfaces of the structure were shown in changes of similar trend, and high stresses appeared on the structure wall 2. The stresses in the meridional direction on the interior and exterior surfaces were shown in change of different trend. Especially, the stresses at the junctions between the dome and the wall and between the wall and the bottom plate of the structure were very high, compared with those at other parts of the structure. 3. The stress changes in the direction of thickness on the crown of the dome were much linearly distributed. However, as the amount of tendon increased, the stresses in the upper and lower parts of the wall established with the tendon were shown stress concentration. 4. The stress changes in the direction of thickness on the center of the structure wall was linearly distributed in the all cases, and special stress due to the use of the tendon was not shown.

  • PDF

A Study on the Reduction of Stress Concentration for the Breech System (잠금장치의 응력집중 저감에 관한 연구)

  • 이영신;류충현;송근영;김인우;이규섭;차기업
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.246-254
    • /
    • 2001
  • The breech system can be considered as a pressure vessel with an internal plug under high explosive pressure. The system consists of a breech block(internal plug) whose front surface subjects to pressure, and a breech ring(pressure vessel). There is the geometric discontinuity around roots of connection parts and then stress concentration is introduced due to pressure, where contact effect may be ignored because contact plane between two equipments is parallel ideally, Generally high stress concentration phenomena shorten the life cycle of the mechanical system. It is well known that shock load is much more harmful on safety of the system than static load. In this present paper, several geometric design variables which may affect stress condition on the system are chosen and the parametric study on the design variables is carried using commercial FEM codes. Finally, the obtained results in the single lug breech system are applied to design the 3 lugs breech system. The 3 lugs breech system can reduce the maximum stress level.

  • PDF

Study on the Network Architecture and the Wavelength Assignment Algorithm for All-Optical Transport Network (완전 광전달망에 적합한 망 구조와 파장 할당 알고리즘 연구)

  • 강안구;최한규;양근수;조규섭;박창수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1048-1058
    • /
    • 1999
  • This paper compares some architectures to achieve the optimized WDM architecture for all optical transport network, the comparison is presented in terms of the number of required wavelength and LT. These architecture types are PPWDM, SHWDM, DHWDM and fully optical WDM. Topology is a static ring network where the routing pattern is fixed and traffic pattern has uniform demand. This paper also proposes an algorithm for the wavelength assignment for a folly optical WDM ring network which has full mesh traffic pattern. The algorithm is based on heuristic algorithm which assigns traffic connections according to their respective shortest path. Traffic described here that is to be passed through can be routed directly within the optical layer instead of having the higher layer to handle it.

  • PDF

Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials (세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Finite Element Analysis of Glass Fiber Reinforced Plastic Pipes Under Internal Pressure (내압을 받는 복합 적층 파이프(GFRP) 구조의 유한요소 해석)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.101-109
    • /
    • 1994
  • A degenerated cylindrical shell element for modeling glass fiber reinforced plastic pipes is developed and its performance for static structural analysis under internal uniform pressure is evaluated. The element is a nine node degenerated solid shell element with reduced integration technique, addition of nonconforming displacement modes, and assumed strain method to improve convergence of analysis. Several numerical examples are solved and compared with analytical solutions and other F.E.M programs, The results show that the increment of fiber orientation in the GFRP pipes with reference to the longitudinal axis cause less radial displacements and much stiffness in the pipes. This is reasonable since the internal pressure will primarily cause hoop stresses in the ring and 90-angle ply GFRP ring carry these efficiently in pure tension.

  • PDF

Performance evaluation of plasma nitrided 316L stainless steel during long term high temperature sodium exposure

  • Akash Singh;R. Thirumurugesan;S. Krishnakumar;Revati Rani;S. Chandramouli;P. Parameswaran;R. Mythili
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1468-1475
    • /
    • 2023
  • Enhancement of wear resistance of components used in fast reactors is necessary for long service life of the components. Plasma nitriding is a promising surface modification technology to impart high hardness and improved wear resistance of various steel components. This study discusses the characterization of chrome nitrided SS316L casing ring used in secondary sodium pump of fast breeder reactor and its stability under long term sodium exposure. Microstructural and hardness analysis showed that stress relieved component could be chrome nitrided successfully to a thickness of about 100 ㎛. Assessment of in-sodium performance of the chrome nitrided casing ring subjected to long term exposure up to 5000h at 550℃, showed retention of chrome nitrided layer with a case depth almost similar to that before sodium exposure. A slight decrease in the hardness was observed due to prolonged high temperature sodium exposure. Tribological studies indicate very low coefficient of friction indicating the retention of good wear resistance of the coating even after long term sodium exposure.

Development of Radiation Free Soft X-Ray Ionizer with Ion Control (완전차폐 및 이온조절형 연X선식 정전기제거장치의 개발)

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.22-27
    • /
    • 2016
  • The Electrostatic Charge Prevention Technology is a core factor that highly influences the yield of Ultra High Resolution Flat Panel Display and high-integrated semiconductor manufacturing processes. The corona or x-ray ionizations are commonly used in order to eliminate static charges during manufacturing processes. To develop such a revolutionary x-ray ionizer that is free of x-ray radiation and has function to control the volume of ion formation simultaneously is a goal of this research and it absolutely overcomes the current risks of x-ray ionization. Under the International Commission on Radiological Protection, it must have a leakage radiation level that should be lower than a recommended level that is $1{\mu}Sv/hour$. In this research, the new generation of x-ray ionizer can easily control both the volume of ion formation and the leakage radiation level at the same time. In the research, the test constraints were set and the descriptions are as below; First, In order not to leak x-ray radiation while testing, the shielding box was fully installed around the test equipment area. Second, Implement the metallic Ring Electrode along a tube window and applied zero to ${\pm}8kV$ with respect to manage the positive and negative ions formation. Lastly, the ion duty ratio was able to be controlled in different test set-ups along with a free x-ray leakage through the metallic Ring Electrode. In the result of experiment, the maximum x-ray radiation leakage was $0.2{\mu}Sv/h$. These outcome is lower than the ICRP 103 recommended value, which is $1{\mu}Sv/h$. When applying voltage to the metallic ring electrode, the positive decay time was 2.18s at the distance of 300 mm and its slope was 0.272. In addition, the negative decay time was 2.1s at the distance of 300 mm and its slope was 0.262. At the distance of 200 mm, the positive decay time was 2.29s and its slope was 0.286. The negative decay time was 2.35s and its slope was 0.293. At the distance of 100 mm, the positive decay time was 2.71s and its slope was 0.338. The negative decay time was 3.07s and its slope was 0.383. According to these research, the observation was shown that these new concept of ionizer is able to minimize the leakage radiation level and to control the positive and negative ion duty ratio while ionization.