• Title/Summary/Keyword: Static Gait

Search Result 153, Processing Time 0.031 seconds

Development of a Static Prosthesis-Alignment Device Using a Force Plate and a Laser Light (힘측정판과 레이저 광을 이용한 정적 의족정렬장치의 개발)

  • 이기원;김기완;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2000
  • The alignment of the prosthetics is very important in an amputee's gait. In the present study. a static prosthesis-alignment device was developed. It consisted of a force plate with four load cells, a laser beam controlled by a step motor, and a control part programmed by PCBASIC. Using the static prosthesis-alignment device, we measured the distance between the load line and various joints of 24 normal volunteers in three standing postures. such as neutral, forward leaning, and backward leaning. Only neutral postures were evaluated on four trans-tibial amputees. The load line for the normal person's neutral position located anterior to the ankle, the knee, and the greater trochanter, but posterior to the shoulder joint. Forward and backward leaning of the normal person resulted in a significant anterior and posterior movements of the load line, respectively. The load line for the amputated side of the trans-tibial amputee also located anterior to the ankle, the extremity prostheses, providing a good relative locations of the load line with respect to various joints.

  • PDF

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.

Research on Stability of Control for Quadruped Robot with Robust Leg Structure Design (강인한 다리 구조 설계에 따른 사족 보행 로봇 제어 안정성 연구)

  • Hosun Kang;Jaehoon An;Hyeonje Cha;Wookjin Ahn;Hwayoung Song;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.172-181
    • /
    • 2023
  • This paper presents research on the stability of control for a quadruped robot with two different leg structure designs. The focus of the research is on the design and analysis of the leg structures in terms of their impact on the stability and robustness of the robot's motion. First, a static analysis was performed in the simulation to compare the structural strength of the legs when the same force was applied. Secondly, two quadruped robots were built, each equipped with differently designed legs, and performed trot gait walking in the real world. And the states of the robots and the torques of each joint were analyzed and compared. In conclusion, based on the results of structural analysis in simulation and the actual walking experiments with the robots, it was demonstrated that the legs designed to be structurally robust improved the control stability of the quadruped robot.

Pressure Distribution in Stump/Socket Interface in Response to Socket Flexion Angle Changes in Trans-Tibial Prostheses With Silicone Liner

  • Kang, Pil;Kim, Jang-Hwan;Roh, Jung-Suk
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 2006
  • This study examined the effects of socket flexion angle in trans-tibial prosthesis on stump/socket interface pressure. Ten trans-tibial amputees voluntarily participated in this study. F-socket system was used to measure static and dynamic pressure in stump/socket interface. The pressure was measured at anterior area (proximal, middle, and distal) and posterior area (proximal, middle, and distal) in different socket flexion angles ($5^{\circ}$, $0^{\circ}$, and $10^{\circ}$). Paired t-test was used to compare pressure differences in conventional socket flexion angle of $5^{\circ}$ with pressures in socket flexion angles of $0^{\circ}$ and $10^{\circ}$ (${\alpha}$=.05). Mean pressure during standing in socket flexion angle of $10^{\circ}$ decreased significantly in anterior middle area (19.7%), posterior proximal area (10.4%), and posterior distal area (16.3%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (19.3%) and decreased significantly in anterior distal area (19.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (19.6%) and increased significantly in anterior distal area (8.2%) compared with socket flexion angle of $5^{\circ}$. Peak pressure during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.0%) compared with socket flexion angle of $5^{\circ}$ and peak pressure during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (22.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure over 80% of peak pressure ($MP_{80+}$) during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.9%) and decreased significantly in anterior distal area (22.5%) compared with socket flexion angle of $5^{\circ}$. $MP_{80+}$ during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior distal area (34.1%) compared with socket flexion angle of $5^{\circ}$. Asymmetrical pressure change patterns in socket flexion angle of $0^{\circ}$ and $10^{\circ}$ were revealed in anterior proximal and distal region compared with socket flexion angle of $5^{\circ}$. To provide comfortable and safe socket for trans-tibial amputee, socket flexion angle must be considered.

  • PDF

Realization of biped walking robot

  • Ha, Tae-Sin;Kim, Joo-Hyung;Choi, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.2-134
    • /
    • 2001
  • This paper treats the implementation of a statically stable control system for a biped walking robot with 10 degrees-of-freedom. Statically stable walking of a biped robot can be realized by keeping the center of mass (COM) inside the sole of the supporting foot (or feet) during single-support or double-support phases. We predetermined five static positions for walking based on the COM method. The positions can be represented by the length of the gait, the width between the feet, the height of the foot and two parameters in the hip movement. With the five parameters, we calculated the position trajectory. And we got the angular trajectories of 10 joints from the posit ion trajectory using the position tracking control and neural network. By tracking the angular trajectories, the robot can walk maintaining stability. We implemented walking of a biped robot throught the above ...

  • PDF

Parameters for Min. Time and Optimal Control of Four-Legged Mobile Robot (4-족 이동로보트의 최소시간 최적제어를 위한 파라메터 연구)

  • 박성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.490-496
    • /
    • 1995
  • A four-legged mobile robot can move on the plain terrain with mobility and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra times for a mobile robot to cross those obstacles and the stability should be considered during motion. The main objevtive is the study of a quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a quadruped can move on any mixed rough terrain as 4-legged animal moves. Each leg of a determine the crossing capability in a static analysis. A quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain informations from scanner and finally can be moved as animals move with mobility and stability.

  • PDF

The Effect of Floor Slipperiness on Gait Characteristic (바닥의 미끄럼 저항이 보행 특성에 미치는 영향)

  • Kim, Tack-Hoon;Han, Seok-Kyu;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.133-141
    • /
    • 2015
  • The floor slipperiness is an essential property for the pedestrian safety. This study was conducted to develop the slip test apparatus to be well accorded with actual characteristics of human gait; and the correlation between RCOF (Required coefficient of friction), Rz (Surface roughness), and 3 coefficients of slip resistance (C.S.R (Coefficient of slip resistance), BPN (British pendulum number), and SCOF (Static coefficient of friction)) were analyzed. Result of the analysis revealed that the cadence, stride length, and step length were proportional to the walking speed, and the significant correlation between walking speed and RCOF was found. However, the correlation between RCOF and the other respective coefficients of slip resistance was almost unidentified thus it would be difficult to identify the actual property of floor slipperiness with the RCOF alone.

The effect of balance training with plantar flexor stretching on range of motion, balance, and gait in stroke patients: a randomized controlled pilot trial

  • Park, Ki-Suk;Choi, Jong-Duk
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.2
    • /
    • pp.66-72
    • /
    • 2015
  • Objective: The aim of this study was to investigate the effect of balance training with plantar flexor stretching on ankle dorsi flexion range of motion (ROM), balance, and gait ability in stroke patients. Design: A randomized controlled pilot trial. Methods: Thirty stroke patients volunteered to participate in this study. The subjects were randomly allocated to two groups: the experimental group (n=15) received the neurodevelopment therapy plus balance training with plantar flexor stretching for 20 minutes in one session. The control group (n=15) received the same neurodevelopment therapy plus plantar flexor static stretching for 20 minutes in one session. Both groups underwent sessions four times a week, for a total of 4 weeks. Measurements included passive range of motion (PROM), active range of motion (AROM) of ankle dorsiflexion using a goniometer, timed up and go (TUG), the functional reaching test (FRT), and the 10 m walk test (10 MWT). Results: There were significant improvements in AROM and PROM of ankle dorsiflexion, TUG, and FRT scores after the intervention in the experimental group (p<0.05). However, the control group showed no statistically significant differences except for PROM of ankle dorsiflexion. The experimental group showed a significant improvement in PROM, TUG, and FRT scores compared to the control group (p<0.05). Conclusions: Balance training with plantar flexor stretching improves ankle dorsiflexion ROM and balance ability in patients with stroke. Therefore, this therapeutic intervention will be effective for rehabilitation of stroke patients in the clinical setting.

Effect of Hip Joint Mobilization on Hip Mobility, Balance and Gait With Stroke Patients (고관절 관절가동기법이 뇌졸중 환자의 고관절 가동성, 균형과 보행능력에 미치는 효과)

  • Kim, Young-Hoon;Jang, Hyun-Jeong;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.21 no.2
    • /
    • pp.8-17
    • /
    • 2014
  • The purpose of this study was to examine the effects of hip joint mobilization (HJM) on walking ability, balance ability, and the joint range of motion in stroke patients to minimize the problems of the musculoskeletal system in patients with central nervous system diseases. All volunteers were randomly assigned to the HJM group ($n_1=14$) and the general neurodevelopment therapy (NDT) group ($n_2=16$). The HJM procedure involved applying Maitland mobilization techniques (distraction, lateral gliding, inferior gliding, and anterior gliding) by grade 3 to both hip joint. The mobilization process included mobilization and NDT for 15 min/day, 3 days a week for 4 weeks. The outcome measures were evaluated, including the hip joint passive range of motion (ROM) test and femur head anterior glide test (FHAG) using prone figure four test, dynamic and static balance abilities [timed up and go (TUG) test and center of pressure (COP) analysis], and walking ability [10-meter walking test (10MWT) and 6-min walking test (6MWT)]. Both the groups showed significant post-training differences in the hip joint ROM (FHAG and degree of hip extension) and 10MWT. The post-training improvements in the TUG test were significantly greater in patients of the HJM group than in the NDT group; however, there were no post-training improvements in COP in both groups. Patients in the HJM group showed post-training improvement in the 6MWT; however, statistically significant differences were not observed. Patients in the NDT group showed post-training improvements in the 6MWT. These results suggest that HJM improves hip joint ROM, dynamic balance ability, and walking speed in stroke patients. However, further studies are required to evaluate the long-term therapeutic efficacy of HJM in stroke patients.

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.