• 제목/요약/키워드: Static Gait

검색결과 150건 처리시간 0.021초

Relationship between Gait, Static Balance, and Pelvic Inclination in Patients with Chronic Stroke

  • Choe, Yu-Won;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • 대한물리의학회지
    • /
    • 제16권1호
    • /
    • pp.17-22
    • /
    • 2021
  • PURPOSE: This study examined the correlations between gait, static balance, and pelvic inclination in patients with chronic stroke. METHODS: Twenty-two chronic stroke patients were included in this study. The subjects participated in gait, static balance, and pelvic inclination tests. In the gait measurement, the cadence and gait velocity were measured, and the average of three trials was calculated and recorded. The static balance was measured using a force platform. The data was captured for ten seconds, and five successful trials were recorded. Pelvic inclination in the sagittal plane was measured using a palpation meter. For data processing, a KolmogorovSmirnov test was used to determine the type of distribution for all variables. Pearson's correlation coefficient was used for correlation analysis. The correlations among the gait, static balance, and pelvic inclination was calculated. The level of significance was .05. RESULTS: Significant negative correlations were observed between the gait variables (cadence, velocity) and static balance variables (COP path length, COP average velocity, and 95% confidence ellipse area) (p < .05). On the other hand, there was no significant correlation between pelvic inclination and gait or between the pelvic inclination and static balance variables. CONCLUSION: Significant correlations were observed between the gait function and static balance. On the other hand, there were no significant correlations between the pelvic inclination and gait and static balance. These results suggest that the pelvic inclination is not an important consideration for increasing the gait function and static balance.

편측 정적스트레칭이 보행 비대칭자의 하지 유연성과 대칭성 및 시간적 보행 변인에 미치는 영향 (Effects of Unilateral Static Stretching on Flexibility and Symmetry of Lower Leg, and Temporal Gait Variables in Gait Asymmetry People)

  • 권영애;유경태;이호성
    • 대한물리의학회지
    • /
    • 제15권3호
    • /
    • pp.89-98
    • /
    • 2020
  • PURPOSE: This study investigated the effects of unilateral static stretching on the flexibility and symmetry of the lower leg, and temporal gait variables in gait asymmetry people. METHODS: Twenty gait asymmetry people were divided into a unilateral static stretching group (USG, n = 10) and control group (CON, n = 10). The USG performed unilateral static stretching for 60 minutes, three times a week, and eight weeks. The flexibility of the lower leg (SR), and symmetry (BR), and temporal gait variables (Step length; SL, gait speed; GS) were measured before, after four and eight weeks of unilateral static stretching. Moreover, SI (symmetry index; SI) was calculated from the measured SL value. Statistical analyses were conducted using one-way ANOVA and two-way ANOVA with repeated measures, a paired t-test, and multiple comparisons according to Scheffe. RESULTS: SR and BR in the dominant and non-dominant side, and GS were increased significantly at USG after eight-weeks compared to before unilateral static stretching (p < .05). The difference in BR in the dominant and non-dominant side, and step length (SI) decreased significantly at USG after eight-weeks compared to before unilateral static stretching (p < .05). CONCLUSION: Unilateral static stretching improves the flexibility and symmetry of the lower leg, and temporal gait variables in gait asymmetry people.

편마비환자의 정적 골반경사각에 따른 보행 비대칭율의 차이에 대한 연구 (The study on difference of gait asymmetry ratio according to static pelvic inclination level in hemiplegic patient)

  • 김병조
    • The Journal of Korean Physical Therapy
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2006
  • Purpose: This study was performed to determine the difference or temporal-spatial gait asymmetry ratio according to static pelvic inclination level in hemiplegic patients. Methods: The subjects were 25 hemiplegic patients who was experienced stroke on MCA territory. Gait parameters and static pelvic inclination were recorded by $GAITRite^{(R)}$ system and radiologic PACS. The subjects were divided into three group according to static pelvic inclination. In the group I, the subjects have static pelvic inclination below $58^{\circ}$. The group II has $58^{\circ}{\sim}62^{\circ}$ or static pelvic inclination and the group m has over $62^{\circ}$ or static pelvic inclination. The data or three groups were analysed with ANOVA. Results: In comparison or single support time asymmetry ratio among 3 groups, the score or group II was significantly higher than the other groups(p<0.05). But the swing time asymmetry ratio was not significant(p>0.05). Conclusion: Asymmetry ratio of single support time was statistically significant by static pelvic inclination level. But asymmetry ratio or group II was the highest among three groups. It means that the patients or normal range of pelvic inclination was showed the most asymmetry or gait. And swing time asymmetry ratio was not significant among three groups. Even if the patient has normal ranged static pelvic inclination, it doesn't suggest that the patient has low gait asymmetry.

  • PDF

물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구 (A study for semi-static quadruped walking robot using wave gait)

  • 최기훈;김태형;유재명;김영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

Effects of Gait Training Using a Shoulder-Back Orthosis on Balance and Gait in Patients with Stroke

  • Han-Byul Youn;Jong-Kyung Lee;Yu-Min Ko;Ji-Won Park
    • The Journal of Korean Physical Therapy
    • /
    • 제35권6호
    • /
    • pp.200-205
    • /
    • 2023
  • Purpose: The purpose of this study is to find out how gait training with shoulder-back assistive device affects dynamic and static balance, gait of patients with stroke and to help improve body alignment, balance, and gait ability in stroke patients. Methods: Measurements were taken of the 20 subjects before intervention without shoulder-back assistive device, after intervention with device, and follow up after an hour compared. Berg balance scale used to evaluate dynamic balance; wii balance board was used to measure static balance; and gait ability were measured by timed up and go test and 10-meter walk test. To analyze the results, a one-way repeated measures analysis of variance was implemented to compare the measurements. Results: The results showed that, after wearing the shoulder-back assistive device, the subjects' dynamic balance statistically significantly improved; no statistically significant difference was observed in static balance, although their balance ability was enhanced; and their increase in gait ability was statistically significant. Conclusion: This study proved that gait training combined with a shoulder-back assistive device positively impacted dynamic and static balance, gait of patients with stroke.

소형사각 보행로보트의 제작과 정적걸음새의 구현 (Design of Small Scale Quadruped Walking Robot and Realiazion of Static Gait)

  • 배건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.398-402
    • /
    • 1996
  • This paper addresses the design and the gait control of quadruped walking robot. First, we concern the mechanical and electronical(control system) hardware of walking robot, and the second is the results of experiments. The walking robot is the most suitable form to substitute fot human being. So walking robot is worthy of research. The quadruped walking robot and control system is the simplest type of walking robot, therefore we designed a small seale robot for realization of static gait. The robot is designed commpactly and its legs are constructed parallel link type and able to move freely in space. Control system consists of one upper level controller and four lower level controllers. The upper level controller plans the walking path and commands the low level controllers to follow the planned path. The main function of low level cotrollers is control of motors. Total number of motors is twealve and they operate four legs. And robot is ordered to walk and realize static wave gait.

  • PDF

사각보행로보트의 걸음새 제어를 위한 정적 안정도 해석 (Static Stability Analysis for Gait Control of a Quardruped Walking Robot)

  • 임준홍;서일홍;임미섭
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.1014-1021
    • /
    • 1989
  • The problem of controlling static gaits for a quadruped walking robot is investigated. A theoretical approach to gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects fo the stride length on static stability are analyzed and the relations between static stability and initial body configurations are examined. It is shown that the moving velocity can be increased to some extent without affecting stability margins for a given initial body configuration. Computer simulations are performed to verify the analysis.

  • PDF

사각 보행 로보트의 걸음새 제어에 관한 연구 (On gait control of a quadruped walking robot)

  • 임미섭;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.113-118
    • /
    • 1988
  • The problem of controlling static gaits of a Quadruped Walking Robot is investigated. A theoretical approach to the gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects of the stride length to the static stability are analyzed, and the relations between the static stability and the initial body configurations are examined. Extensive computer simulations are performed to verify the analysis results.

  • PDF

4각 보행 로봇의 정적 걸음새 생성 (Static Gait Generation of Quadruped Walking Robot)

  • 김남웅;신효철;김국원
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.

실루엣 기반 걸음걸이 인식 방법에서 동적 단서의 중요성 (Importance of Dynamic Cue in Silhouette-Based Gait Recognition)

  • 박한훈;박종일
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.23-30
    • /
    • 2005
  • 최근 생체 인식 기술의 하나로, 걸음걸이 인식에 대한 관심이 크게 증가하고 있다. 실루엣기반 걸음걸이 인식은 걸음걸이 인식을 위한 가장 보편적인 방법으로, 본 논문에서는 실루엣 기반 걸음걸이 인식에서 걸음걸이의 특성을 결정하는 정보에 대해 분석한다. 걸음걸이는 크게, 정적인 신체 모양(static body shape)과 동적인 신체 운동(dynamic body motion), 두 가지 단서(cue)에 의해 표현될 수 있다. 최근, 걸음걸이의 특성은 신체 모양과 관련된 정적인 단서에 의해 주로 결정되며 신체 운동과 관련된 동적인 단서는 걸음걸이의 특성에 거의 영향을 주지 않는다는 연구들이 보고되고 있다. 이와 달리, 본 논문에서는 신체운동과 관련된 동적인 단서 역시 걸음걸이의 특성을 결정짓는 중요한 요소라고 판단하여 이를 실험적으로 검증하고자 한다. 이를 위해, 크게 두 개의 걸음걸이 데이터베이스(UBC DB, Southampton Small DB)를 이용하여 실험을 수행하였다. UBC DB는 보편적인 걸음걸이를 저장한 것이고, Southampton DB는 다른 종류의 옷이나 신발, 가방을 착용하거나, 걸음걸이의 속도를 바꾸는 등 보편적인 걸음걸이와 다른 특성을 가지는 걸음걸이를 저장한 것이다. 실험 결과, 인식률은 UBC DB에서 신체 모양을 이용할 경우 $100\%$, 신체 운동을 이용할 경우 $95.2\%$이고, Southampton DB에서는 신체 모양을 이용할 경우 $50.0\%$, 신체 운동을 이용할 경우 $55.8\%$이다. 잘못된 인식을 할 위험도(risk)는 UBC DB에서는 신체 모양을 이용할 경우 0.91, 신체 운동을 이용할 경우 0.97, Southampton DB에서는 신체 모양을 이용할 경우 0.98, 신체 운동을 이용할 경우 0.98이다. 결과적으로, 보편적인 걸음걸이의 특성은 신체 모양과 관련된 정적인 단서에 의해 주로 결정되지만, 옷이나 가방 등에 의해 가장된(disguised) 걸음걸이에서는 신체 운동과 관련된 동적인 단서에 의해 주로 결정된다.