• Title/Summary/Keyword: Static CAD model

Search Result 29, Processing Time 0.026 seconds

Editing Depression Features in Static CAD Models Using Selective Volume Decomposition (선택적 볼륨분해를 이용한 정적 CAD 모델의 함몰특징형상 수정)

  • Woo, Yoon-Hwan;Kang, Sang-Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.178-186
    • /
    • 2011
  • Static CAD models are the CAD models that do not have feature information and modeling history. These static models are generated by translating CAD models in a specific CAD system into neutral formats such as STEP and IGES. When a CAD model is translated into a neutral format, its precious feature information such as feature parameters and modeling history is lost. Once the feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify static CAD models are limited, Direct modification methods such as tweaking can only handle the modifications that do not involve topological changes. There was also an approach to modify static CAD model by using volume decomposition. However, this approach was also limited to modifications of protrusion features. To address this problem, we extend the volume decomposition approach to handle not only protrusion features but also depression features in a static CAD model. This method first generates the model that contains the volume of depression feature using the bounding box of a static CAD model. The difference between the model and the bounding box is selectively decomposed into so called the feature volume and the base volume. A modification of depression feature is achieved by manipulating the feature volume of the static CAD model.

A new CAD-compatible non-quasi-static MOS tansient model (새로운 CAD용 Non-Quasi-Static MOS 과도 전류 모델)

  • 권대한;류윤섭;김기혁;황성우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.31-38
    • /
    • 1997
  • A new CAD-compatible non-quasi-static (NQS) MOS transient model is presented. A new type of weighted residual method, the collcoatin method, is adopted to obtian an approximate ordinary differntial equation from the continuity eqation. Contrasting to the conventional NQS models, the new model can directly include the variatin of the depletion charge and the derived transient current sare expressed with only physically meaningful variables. The new model predicts transient behaviors reasonably well in the calculation including cutoff regions where the depletion charge rapidly changes.

  • PDF

Simple DC CAD model and parameter extraction method for HBT (HBT를 위한 간단한 DC CAD 모델과 파라메터 추출 방법)

  • 서영석;박용완
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.48-55
    • /
    • 1998
  • We propose a new static current source model and parameter extraction method for AlGaAs/GaAs HBT. The proposed model has 9 parameters describing internal currents and are experessed with the physically meaningful parameters.The proposed parameter extraction method uses the measured dC IV curves and does not need the gummel plt data and any optimization process. the constructed model based on the proposed method predicts the measured data well.

  • PDF

New Digital Esthetic Rehabilitation Technique with Three-dimensional Augmented Reality: A Case Report

  • Hang-Nga, Mai;Du-Hyeong, Lee
    • Journal of Korean Dental Science
    • /
    • v.15 no.2
    • /
    • pp.166-171
    • /
    • 2022
  • This case report describes a dynamic digital esthetic rehabilitation procedure that integrates a new three-dimensional augmented reality (3D-AR) technique to treat a patient with multiple missing anterior teeth. The prostheses were designed using computer-aided design (CAD) software and virtually trialed using static and dynamic visualization methods. In the static method, the prostheses were visualized by integrating the CAD model with a 3D face scan of the patient. For the dynamic method, the 3D-AR application was used for real-time tracking and projection of the CAD prostheses in the patient's mouth. Results of a quick survey on patient satisfaction with the two visualization methods showed that the patient felt more satisfied with the dynamic visualization method because it allowed him to observe the prostheses directly on his face and be more proactive in the treatment process.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

A Study on the Stress Simulation for the Body Design of a PFA-lined Plug Valve (PFA 라이닝 플러그 밸브 설계를 위한 밸브 본체의 응력 시뮬레이션)

  • Kang, Shin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.500-506
    • /
    • 2009
  • This study, is aimed to support the valve design engineer by a CAE simulation on the body of a PFA-lined plug valve, and focuses on static stress analysis, location of the weak point on bending and stiffness of the valve body. To determine whether the valve body can resist being transformed by loads, 1 simulated the stress distribution using CAD/CAE softwares. The 'step' file converted by CAD software after solid modeling is imported to the CAE software. Through simulation procedure, it is shown that the designed-solid-model fur a valve body has stiffness on bending and torsion but has weakness for side bending moment. Also, it is expected that the valve design engineer will understand the basic process of CAE and will be able to apply on his task.

A Technique for Calculating the Hybrid Mode Despersion Characteristics of Microstrip Lines using a Planar Waveguide Model (Planar Waveguide 모델을 이용한 마이크로 스트립선로의 하이브리드 모드 분산특성 계산)

  • 윤현보;고성선;백낙준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.1
    • /
    • pp.36-49
    • /
    • 1987
  • A planar waveguide model is presented for calculating dispersion characteristics of the normalized phase velocity and characteristic impedance with the frequency dependent effective dielectric constand and effective width in microstrip lines of the hybrid mode. Eeff(f) and Weff(f) are applied to a planar waveguide model by using an empirical relations and formula designed for CAD purposes as a function of frequency. A wide range of relative dielectric constants and the strip $h_{width}$strate height(W/h ratios), $0.5$\leq$W/h\leq2.5$ are used. These results are compared with static value, spectral domain analysis, and empirical results. As the result of a computer simulation, in the case of using a planar waveguide model, the frequency dependent normalized phase velocity is more closely approached to 1/ and characteristic impedance is more increased than the other method that has already been presented as the increasing of the frequency. And, the case of applying Eeff(f) designed for the purpose of CAD to this proposed model is show in better result than the case of using a empirical relations.

  • PDF

Bending and free vibration analysis of a smart functionally graded plate

  • Bian, Z.G.;Ying, J.;Chen, W.Q.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.97-113
    • /
    • 2006
  • A simply supported hybrid plate consisting of top and bottom functionally graded elastic layers and an intermediate actuating or sensing homogeneous piezoelectric layer is investigated by an elasticity (piezoelasticity) method, which is based on state space formulations. The general spring layer model is adopted to consider the effect of bonding adhesives between the piezoelectric layer and the two functionally graded ones. The two functionally graded layers are inhomogeneous along the thickness direction, which are approached by laminate models. The effect of interlaminar bonding imperfections on the static bending and free vibration of the smart plate is discussed in the numerical examples.

A CAD-based Software for the Simulation of Lifting and Turnover of Ship Block (선박 블록의 이동 및 반전 시뮬레이션 프로그램 개발)

  • Lee, Soo-Beom;Shin, Sang-Beom;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • In this paper, an application program is made to simulate the behavior of a ship block under various crane works and to generate data of lu9 reactions and wire tensions. The program is based on a CAD program, Pro/ENGINEER. A ship is composed of more than 100 ship blocks. In order to lift, move, turn, or put a ship block at a convenient location fur assembling, workers in a shipyard use cranes, wires, and lugs temporarily attached to the block. In the procedure of lifting and turning a ship block with a crane, it is important to find suitable lug points and wires to do the handling efficiently and prevent accidents. Evaluation of forces in lugs and wires is necessary, but the problem is rather complex due to nonlinearity and nonuniqueness. In the present development, the nonlinear system of equations for quasi-static equilibriums is derived and a Newton type solution method is adopted to solve the system. The importance of initial estimates to the solution is illustrated and two approaches are utilized and compared. With the program developed, users can assign lug points on the CAD model by mouse and choose various linking devices at each crane point. Users can try to simulate the motion for any prescribed conditions, compare the motion of the block and the reactions and choose appropriate lug points and the type of wires and lugs.

  • PDF

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF