• Title/Summary/Keyword: State-space method

Search Result 1,166, Processing Time 0.032 seconds

Optical and Structural Analysis of BaSi2O2N2:Eu Green Phosphor for High-Color-Rendering Lighting (고연색 백색 광원용 BaSi2O2N2:Eu 형광체의 광학·구조 특성 분석)

  • Lee, Sunghoon;Kang, Taewook;Kang, Hyeonwoo;Jeong, Yongseok;Kim, Jongsu;Heo, Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.437-442
    • /
    • 2019
  • Green $BaSi_2O_2N_2:0.02Eu^{2+}$ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of $Eu^{3+}$ into $Eu^{2+}$ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of $BaCO_3$ at $900^{\circ}C$ and phase transitions at $1,300^{\circ}C$ and $1,400^{\circ}C$. By structural analysis, it is confirmed that single phase [$BaSi_2O_2N_2$] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ion. An LED package (chip size $5.6{\times}3.0mm$) is fabricated with a mixture of our green $BaSi_2O_2N_2$, and yellow $Y_3Al_5O_{12}$ and red $Sr_2Si_5N_8$ phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.

Performance analysis and prediction through various over-provision on NAND flash memory based storage (낸드 플래시 메모리기반 저장 장치에서 다양한 초과 제공을 통한 성능 분석 및 예측)

  • Lee, Hyun-Seob
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.343-348
    • /
    • 2022
  • Recently, With the recent rapid development of technology, the amount of data generated by various systems is increasing, and enterprise servers and data centers that have to handle large amounts of big data need to apply high-stability and high-performance storage devices even if costs increase. In such systems, SSD(solid state disk) that provide high performance of read/write are often used as storage devices. However, due to the characteristics of reading and writing on a page-by-page basis, erasing operations on a block basis, and erassing-before-writing, there is a problem that performance is degraded when duplicate writes occur. Therefore, in order to delay this performance degradation problem, over-provision technology of SSD has been applied internally. However, since over-provided technologies have the disadvantage of consuming a lot of storage space instead of performance, the application of inefficient technologies above the right performance has a problem of over-costing. In this paper, we proposed a method of measuring the performance and cost incurred when various over-provisions are applied in an SSD and predicting the system-optimized over-provided ratio based on this. Through this research, we expect to find a trade-off with costs to meet the performance requirements in systems that process big data.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

THE FORCED ERUPTION OF IMPACTED MAXILLARY INCISOR: CASE REPORT (매복된 상악 중절치의 교정적 견인을 이용한 치험례)

  • Kim, Jong-Sik;Kim, Eun-Jung;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.26-32
    • /
    • 2005
  • A tooth impaction means a state that a tooth does not erupt out of oral mucosa or alveolar bone for many reasons. The reasons for an impaction of the Maxillary central incisor are an odontoma, supernumerary tooth, space loss, prolonged remaining or early loss of a preceding deciduous tooth, abnormalities of crown or root caused by trauma of a deciduous tooth and an ectopic position of a tooth germ. In the case of the impacted maxillary incisor, a rapid mesial movement of a lateral incisor leads a space loss and a midline deviation can be happened. Furthermore, it can cause a cyst. When we treated a patient with an impacted central incisor early, we could see a better prognosis. It means an early diagnosis and an exact treatment are very important. Generally if the impaction is not severe or it is caused by a keratinized covering tissue, a surgical exposure can induce an eruption easily but an orthodontic force is recommended when an eruption does not happen after a surgical method, when the eruption path is too transpositioned to be corrected spontaneously and when an impacted tooth is located so deeply. In the treatment using an orthodontic force, careful considerations about a root length, pulp, and a periodontal tissue can improve the periodontal and esthetic prognosis for the long follow-up results. This case is using an orthodontic traction following a periodic observation and in no expectation of spontaneous eruption. After treatment of this case, I have got some knowledges, so I report this case.

  • PDF

A Study on the application of design in field research methods of Land Characteristic Survey for Individual Land Prices (개별공시지가 토지특성조사를 위한 현장조사방법 설계 적용에 관한 연구)

  • Lee, Seong-Kyu;Bae, Sang-Keun;Jung, Dong-Hun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.73-90
    • /
    • 2014
  • The Officially Announced Land Price System has a limit, that is required to be able to reflect changes in land constantly every year, to implement Land Characteristic Survey for calculating land price during a specific period and human resources with limited. The purpose of this study is to apply the 'National Territory Space Usage status Survey' method to survey part of the territorial feature status information inside of selected the target sites, considering the core survey items (land category, the state of land use, altitude difference, standard site inclusion, etc) in the areas surrounding Yeonshinnae Station in which three dongs (Galhyeon-dong, Daejo-dong, Bulgwang-dong) of Eunpyeong-gu, Seoul share borders with. Based on the given budget, the manpower and period was taken into consideration to sort a total of 2,041 lots and conduct surveys on all sites. This study will be able to diagnose the efficient idle human resource utilization and work process construction plan through pilot projects specialized for providing real estate information services in preparation for cases in which national territory information survey projects that provide various business model, as well as major future core projects of the corporation will be carried out.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

An Experimental Study on Blade Deformation of Coaxial Rotor System Using SPR(Stereo Pattern Recognition) Technique (SPR(Stereo Pattern Recognition) 기법을 이용한 동축 로터 블레이드의 변형에 대한 실험적 연구)

  • Yoo, Chanho;Yoon, Byung-Il;Chae, Sanghyun;Kim, Do-Hyung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.597-609
    • /
    • 2020
  • These days, the coaxial rotor system is used for various purposes like UAVs, Mars exploration helicopters, and the next-generation high-speed rotorcraft. A number of research projects on aerodynamic performance of rotor systems, including the coaxial configuration have been made previously. On the contrary, research on rotor blade deformation has been mainly carried out regarding the single rotor system, where such effort has not been enough on the coaxial system. Nonetheless, in case of the coaxial system, blade deformation analysis is much more important because of the complex air flow around the rotors, and that the distance between the two rotors is a key factor affects aerodynamic performance of the entire system. For these reasons, an experimental study on rotor blade deformation of the coaxial system was conducted using the Stereo Pattern Recognition(SPR) technique, one of the state-of-the-art of photogrammetry method. In this research, a small-scale coaxial rotor test stand designed by Korea Aerospace Research Institute(KARI) was used. With the same test stand, performance of the coaxial configuration had been studied before the experimental study on blade deformation, in order to find the relation between performance and blade deformation of the rotor system. Results of the performance test and the deformation study are presented in this article.

Consideration of Silvicultural Practice by Taking Community Type of Pinus densiflora Stand (식생형을 고려한 소나무 임분의 조림적 고찰)

  • Lee, Kwang-Soo;Lee, Jung-Hyo;Kim, Suk-Kwon;Bae, Sang-Won;Jung, Mun-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.56-65
    • /
    • 2009
  • In Korea, Red pine(Pinus densiflora) stands at a very important place, historically, culturally, and emotionally and it is one of the tree species that can produce domestic timber as forest resources economically. The growing space for Red pine forest in Korea is gradually reducing while the space for deciduous tree forests including oak series is gradually increasing. Thus, it is required that the research work should be done on renewal for pine forest retention and its related forest management practices. This research aims at developing stable, sustainable management forests and inducing nature renewal by grasping growth environment and succession process through the pattern of stand and structure analysis of the red pine(Pinus densiflora) for central region. The pine forests in central region were classified into four communities, such as Acer pseudo-sibolianum, Quercus acutissima, Lindera erythrocarpa, and Pinus densiflora and they are showing different characteristics by pattern according to their growing district. There appeared a lot of red pines in the upper layer, but there existed high weight of broad-leaved forest tree species, such as oak series in the middle layer and the appearance of the red pine was meager in the lower layer. Therefore, it appears that the red pine has a high influential ecological strength in terms of correlativity; however, if the red pine in tree layer is dead by aging in nature state with the lapse of time, it is considered that oak species, such as Quercus mongolica, Quercus variabilis, and Quercus serrata will be dominant below sub-tree layer. In addition, there appear differences in characteristics and growth pattern of the red pine forest depending on stand pattern, so it is considered that a differential application method should be employed in the pine forest management.

Study of the Electoral TV-Public Space: Paradox of the Mythical Structure Manipulated by the Technical Institutionalization (TV 선거 공론장 구조 연구: 기계적 제도화의 역설(Paradox))

  • Park, Tae-Soun
    • Korean journal of communication and information
    • /
    • v.36
    • /
    • pp.198-230
    • /
    • 2006
  • The aim of the this study is to observer paradoxal phenomenon in media election. The media, especially Television, was traditionally a journalistic operation representing political events on the outside of political camp. But recently, it intervenes to 'the political camp' as the most important method for election campaign. A centripetal of electronic medias making the dominant political space offer an alternative plan which get over the modern crisis of representative democracy. Even though, to the production of the political symbol and the operation of symbol which constitute substantial system of political action, the human being subject is excluded and the technical system of communication make up a govern structure. So it makes the contradictory situation. TV broadcast for election campaigning show well this paradoxal situation. The institutionalization of electoral broadcasting oriented by the State strengthens an immensification, an economical and political efficiency and a transparency of electoral campaign. But the means which controls the mind of public is also strengthened. It relates the production and circulation of the political symbol and the symbolic image restricted by dominator. In conclusion, this study argues that the media election is institutionalized by the instrumental reason(procedural rationality of politics and technological rationality of broadcasting), therefore the candidate take a fragment roles for the production of transcendental political symbol and the voters accommodate to the symbolic images which are foreseen and they judge.

  • PDF

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.