• Title/Summary/Keyword: State-space approach

Search Result 355, Processing Time 0.035 seconds

Model Predictive Control for Productions Systems Based on Max-plus Algebra

  • Hiroyuki, Goto;Shiro, Masuda;Kazuhiro, Takeyasu;Takashi, Amemiya
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Among the state-space description of discrete vent systems, the max-plus algebra is known as one of the effective approach. This paper proposes a model predictive control (MPC) design method based on the max-plus algebra. Several studies related to these topics have been done so far under the constraints that system parameters are constant. However, in practical systems such as production systems, it is common and sometimes inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable ones, and they are solved by a linear programing method. Since MPC determines optimal control input considering future reference signals, the controller can be more robust and the operation cost can be reduced. Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the proposed method is verified through a numerical simulation.

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

A Consciousness Change of Yangdong Village's Residents connected with Cultural Asset Protection Law -A Comparative Study of 1994 and 2002- (문화재보호법과 관련된 양동마을 주민의식 변화 -1994년과 2002년의 비교 연구-)

  • 강동진
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.46-57
    • /
    • 2003
  • The Yangdong traditional historic village is a representative village having symbolic historic values and unique combinations of natural, cultural, and social characteristics of a Korean historic settlement environment, which has been protected by Cultural Asset Protection Law since 1984. Now, in spite of its potential diverse powers, national strategies concerning Yangdong village do not have satisfactory direction and results. In consideration of this notion, this paper is designed to find and to understand the current state of Yangdong village. This paper aims to analyze The changes in Yangdong village between 1994 and 2002, and through these comparisons, to diagnose and predict future aspects of Yangdong village. Primary data was collected by questionnaire investigation between 1994 and 2002. The living conditions, production, and consciousness of residents of Yangdong village are utilized as standards of analysis. The final analysis results can be summarized as follows: because of the Cultural Asset Protection Law, noticeable changes have occurred in Yangdong village over the last 8 years. These change are different from the ones occurring in general farm villages. Also, most issues related to the changes are interpreted as occurring as a result of the top-down approach, which disregards the opinions and wishes of residents. For this, introduction of renovation concept that emphasizes modernization of life and production space is urgently required. To this end, it is necessary that concern for the traditional historic village should diversity and expand, and not concentrate solely on the cultural properties and architecture-oriented historic elements.

Tracking Control of 6-DOF Shaking Table with Bell Crank Structure (벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어)

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF

T—S Fuzzy Model-based Sampled-data Observer Design for Detecting Internal Oil Leakage in Single-rod Hydraulic Cylinder: LMI Approach (편로드 유압실린더 내부 누유 검출을 위한 T—S 퍼지 모델 기반 샘플치 관측기 설계: LMI 접근법)

  • Jee, Sung Chul;Kim, Hyogon;Park, Jeongwoo;Lee, Mun-Jik;Kang, Hyungjoo;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.405-414
    • /
    • 2016
  • This paper presents an internal oil leakage detection problem for a hydraulic single-rod cylinder. We derive the dynamics of the hydraulic cylinder as a state space model, and then design a T—S fuzzy model-based fault detection observer. We adopt an H observer design scheme so that the observer is robust against disturbance and relatively sensitive to the leakage fault. Sufficient design conditions are derived in the form of linear matrix inequalities. A numerical example is provided to verify the proposed techniques.

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta;Mohammadimehr, M.;Arani, A. Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.753-767
    • /
    • 2019
  • Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Atomic structure and crystallography of joints in SnO2 nanowire networks

  • Hrkac, Viktor;Wolff, Niklas;Duppel, Viola;Paulowicz, Ingo;Adelung, Rainer;Mishra, Yogendra Kumar;Kienle, Lorenz
    • Applied Microscopy
    • /
    • v.49
    • /
    • pp.1.1-1.10
    • /
    • 2019
  • Joints of three-dimensional (3D) rutile-type (r) tin dioxide ($SnO_2$) nanowire networks, produced by the flame transport synthesis (FTS), are formed by coherent twin boundaries at $(101)^r$ serving for the interpenetration of the nanowires. Transmission electron microscopy (TEM) methods, i.e. high resolution and (precession) electron diffraction (PED), were utilized to collect information of the atomic interface structure along the edge-on zone axes $[010]^r$, $[111]^r$ and superposition directions $[001]^r$, $[101]^r$. A model of the twin boundary is generated by a supercell approach, serving as base for simulations of all given real and reciprocal space data as for the elaboration of three-dimensional, i.e. relrod and higher order Laue zones (HOLZ), contributions to the intensity distribution of PED patterns. Confirmed by the comparison of simulated and experimental findings, details of the structural distortion at the twin boundary can be demonstrated.

Conflating Blackness and Rurality: Urban Politics and Social Control of Africans in Guangzhou, China

  • Huang, Guangzhi
    • Journal of Contemporary Eastern Asia
    • /
    • v.19 no.2
    • /
    • pp.148-168
    • /
    • 2020
  • In April, 2020, amid widespread fear of a second wave of infections of the novel coronavirus in China, local authorities in Guangzhou cracked down on the city's black population, resulting in mass evictions of Africans. The incident raises several questions about racism in China. How should we interpret this heavy-handed treatment of black people? Was this an isolated incident? What motivated such operations? In this article, I explain social control of Guangzhou's African communities as a problem of municipal politics. What underlies the government's heavy handed approach, I argue, are those communities' ties to rurality, which constitute a roadblock in the city's urban upgrade. Using Dengfeng Village, one of the best known African communities in China, as a case study, I show that efforts to upgrade the area by the local state and the real estate industry were frustrated by the community's status as an urban village. Africans, whom Chinese have historically associated with rurality, are seen as contributing to a space that has long been stigmatized as a spatial manifestation of rural people's lack of self-discipline. To better reveal the interconnection between social control and urban politics, I place official action in context of the history of the community's formation and the lived experience. This analysis of Dengfeng applies to various extents to other major African communities in Guangzhou.

A refinement and abstraction method of the SPZN formal model for intelligent networked vehicles systems

  • Yang Liu;Yingqi Fan;Ling Zhao;Bo Mi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.64-88
    • /
    • 2024
  • Security and reliability are the utmost importance facts in intelligent networked vehicles. Stochastic Petri Net and Z (SPZN) as an excellent formal verification tool for modeling concurrent systems, can effectively handles concurrent operations within a system, establishes relationships among components, and conducts verification and reasoning to ensure the system's safety and reliability in practical applications. However, the application of a system with numerous nodes to Petri Net often leads to the issue of state explosion. To tackle these challenges, a refinement and abstraction method based on SPZN is proposed in this paper. This approach can not only refine and abstract the Stochastic Petri Net but also establish a corresponding relationship with the Z language. In determining the implementation rate of transitions in Stochastic Petri Net, we employ the interval average and weighted average method, which significantly reduces the time and space complexity compared to alternative techniques and is suitable for expert systems at various levels. This reduction facilitates subsequent comprehensive system analysis and module analysis. Furthermore, by analyzing the properties of Markov Chain isomorphism in the case study, recommendations for minimizing system risks in the application of intelligent parking within the intelligent networked vehicle system can be put forward.