• Title/Summary/Keyword: State space reconstruction

Search Result 44, Processing Time 0.034 seconds

Information Propagation Neural Networks for Real-time Recognition of Vehicles in bad load system (최악환경의 도로시스템 주행시 장애물의 인식율 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sop;Lee, Hai-Ki;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.90-95
    • /
    • 2003
  • For the safety driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implemented.

  • PDF

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • 김종만;황종선;김영민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed.

  • PDF

MASTER - An Indigenous Nuclear Design Code of KAERI

  • Cho, Byung-Oh;Lee, Chang-Ho;Park, Chan-Oh;Lee, Chong-Chul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.21-27
    • /
    • 1996
  • KAERI has recently developed the nuclear design code MASTER for the application to reactor physics analyses for pressurized water reactors. Its neutronics model solves the space-time dependent neutron diffusion equations with the advanced nodal methods. The major calculation categories of MASTER consist of microscopic depletion, steady-state and transient solution, xenon dynamics, adjoint solution and pin power and burnup reconstruction. The MASTER validation analyses, which are in progress aiming to submit the Uncertainty Topical Report to KINS in the first half of 1996, include global reactivity calculations and detailed pin-by-pin power distributions as well as in-core detector reaction rate calculations. The objective of this paper is to give an overall description of the CASMO/MASTER code system whose verification results are in details presented in the separate papers.

  • PDF

Matter Density Distribution Reconstruction of Local Universe with Deep Learning

  • Hong, Sungwook E.;Kim, Juhan;Jeong, Donghui;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.53.4-53.4
    • /
    • 2019
  • We reconstruct the underlying dark matter (DM) density distribution of the local universe within 20Mpc/h cubic box by using the galaxy position and peculiar velocity. About 1,000 subboxes in the Illustris-TNG cosmological simulation are used to train the relation between DM density distribution and galaxy properties by using UNet-like convolutional neural network (CNN). The estimated DM density distributions have a good agreement with their truth values in terms of pixel-to-pixel correlation, the probability distribution of DM density, and matter power spectrum. We apply the trained CNN architecture to the galaxy properties from the Cosmicflows-3 catalogue to reconstruct the DM density distribution of the local universe. The reconstructed DM density distribution can be used to understand the evolution and fate of our local environment.

  • PDF

A Study on the Condition Monitoring for GIS Using SVD in an Attractor of Chaos Theory

  • J.S. Kang;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Knowledge of partial discharge (PD) is important to accurately diagnose and predict the condition of insulation. The PD phenomenon is highly complex and seems to be random in its occurrence. This paper indicates the possible use of chaos theory for the recognition and distinction concerning PD signals. Chaos refers to a state where the predictive abilities of a systems future are lost and the system is rendered aperiodic. The analysis of PD using deterministic chaos comprises of the study of the basic system dynamics of the PD phenomenon. This involves the construction of the PD attractor in state space. The simulation results show that the variance of an orthogonal axis in an attractor of chaos theory increases according to the magnitude and the number of PDs. However, it is difficult to clearly identify the characteristics of the PDs. Thus, we calculated the magnitude on an orthogonal axis in an attractor using singular value decomposition (SVD) and principal component analysis (PCA) to extract the numerical characteristics. In this paper, we proposed the condition monitoring method for gas insulated switchgear (GIS) using SVD for efficient calculation of the variance. Thousands of simulations have proven the accuracy and effectiveness of the proposed algorithm.

A Study of the Analysis of Characteristics of Nonlinear Dynamic System on Blood-Flow of Peripheral Blood-Vessel between Diabetic Patients and Control Subjects (당뇨병환자와 정상인의 말초혈관혈류의 비선형적 운동계 분석에 대한 연구)

  • Kim, D.H.;Choi, J.Y.;Yi, S.H.;Go, H.W.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.363-367
    • /
    • 1996
  • In general, the physiological systems have shown nonlinear complex phenomena. This study analyzes nonlinear characteristics of the flow of peripheral blood vessel dynamics in physiological systems using chaos theory. We performed this study by means of several quantity methods and power spectrum. The quantity methods are a phase space reconstruction and a poincare's map. And the power spectrum method is a conventional linear analysis. Experimental data have been acquired from examining 10 diabetic patients, and 10 control subjects in initial stable state. In acquisition experminetal data, we anlysized the differences of nonlinear characteristics between diabetic group and control group. The results of quality analysis methods showed the flow of peripheral blood vessel had the nonlinear and chaotic characteristics, screening a strange attractor on reconstructed phase space. In conclusion, the flow dynamics of peripheral blood vessel had a chaotic behavior of nonlinear dynamic systems, dynamic system, and differences of characteristic of nonlinear dynamic system.

  • PDF

High-Performance Elevator Traction Using Direct Torque Controlled Induction Motor Drive

  • Arafa, Osama Mohamed;Abdallah, Mohamed Elsayed;Aziz, Ghada Ahmed Abdel
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1156-1165
    • /
    • 2018
  • This paper presents a detailed realization of direct torque controlled induction motor drive for elevator applications. The drive is controlled according to the well-known space vector modulated direct control scheme (SVM-DTC). As the elevator drives are usually equipped with speed sensors, flux estimation is carried out using a current model where two stator currents are measured and accurate instantaneous rotor speed measurement is used to overcome the need for measuring stator voltages. Speed profiling for a comfortable elevator ride and other supervisory control activities to provide smooth operation are also explained. The drive performance is examined and controllers' parameters are fine-tuned using MATLAB/SIMULINK. The blocks used for flux and torque estimation and control in the offline simulation are compiled for real-time using dSPACE Microlabox. The performance of the drive has been verified experimentally. The results show good performance under transient and steady state conditions.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

3D-Distortion Based Rate Distortion Optimization for Video-Based Point Cloud Compression

  • Yihao Fu;Liquan Shen;Tianyi Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.435-449
    • /
    • 2023
  • The state-of-the-art video-based point cloud compression(V-PCC) has a high efficiency of compressing 3D point cloud by projecting points onto 2D images. These images are then padded and compressed by High-Efficiency Video Coding(HEVC). Pixels in padded 2D images are classified into three groups including origin pixels, padded pixels and unoccupied pixels. Origin pixels are generated from projection of 3D point cloud. Padded pixels and unoccupied pixels are generated by copying values from origin pixels during image padding. For padded pixels, they are reconstructed to 3D space during geometry reconstruction as well as origin pixels. For unoccupied pixels, they are not reconstructed. The rate distortion optimization(RDO) used in HEVC is mainly aimed at keeping the balance between video distortion and video bitrates. However, traditional RDO is unreliable for padded pixels and unoccupied pixels, which leads to significant waste of bits in geometry reconstruction. In this paper, we propose a new RDO scheme which takes 3D-Distortion into account instead of traditional video distortion for padded pixels and unoccupied pixels. Firstly, these pixels are classified based on the occupancy map. Secondly, different strategies are applied to these pixels to calculate their 3D-Distortions. Finally, the obtained 3D-Distortions replace the sum square error(SSE) during the full RDO process in intra prediction and inter prediction. The proposed method is applied to geometry frames. Experimental results show that the proposed algorithm achieves an average of 31.41% and 6.14% bitrate saving for D1 metric in Random Access setting and All Intra setting on geometry videos compared with V-PCC anchor.

Information Propagation Neural Networks for Real-time Recognition of Load Vehicles (도로 장애물의 실시간 인식을 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Hyong-Suk;Kim, Sung-Joong;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.546-549
    • /
    • 1999
  • For the safty driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implmented.

  • PDF