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A Study on the Condition Monitoring for GIS Using SVD in an
Attractor of Chaos Theory

J.S. Kang*, C.H. Kim* and R.K. Aggarwal**

Abstract - Knowledge of partial discharge (PD) is important to accurately diagnose and predict the
condition of insulation. The PD phenomenon is highly complex and seems to be random in its
occurrence. This paper indicates the possible use of chaos theory for the recognition and distinction
concerning PD signals. Chaos refers to a state where the predictive abilities of a systems future are lost
and the system is rendered aperiodic. The analysis of PD using deterministic chaos comprises of the
study of the basic system dynamics of the PD phenomenon. This involves the construction of the PD
attractor in state space. The simulation results show that the variance of an orthogonal axis in an
attractor of chaos theory increases according to the magnitude and the number of PDs. However, it is
difficult to clearly identify the characteristics of the PDs. Thus, we calculated the magnitude on an
orthogonal axis in an attractor using singular value decomposition (SVD) and principal component
analysis (PCA) to extract the numerical characteristics. In this paper, we proposed the condition
monitoring method for gas insulated switchgear (GIS) using SVD for efficient calculation of the
variance. Thousands of simulations have proven the accuracy and effectiveness of the proposed

algorithm.
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1. Introduction

In order to supply electric power with a high degree of
reliability, the insulation diagnosis of high voltage power
apparatus like SF6 gas insulated switchgear (GIS) is
needed. Partial discharge (PD) measurement is a promising
technique to prevent the breakdown in GIS and to maintain
the high performance of electrical insulation. Substantial
amounts of research related to the diagnosis technique for
GIS has been reported [1], and various kinds of PD sensors,
especially UHF sensors, have been developed. However,
there exist external noises inside and outside GISs on-site.
An advanced technique is indispensable to discriminate
small PD signals in SF6 gas from large external noises and
to improve the sensitivity for detecting harmful PD signals
in GIS. Therefore, a PD identification technique needs to
be developed [2].

PD is extremely complex and exhibits behavior that
seems to be apparently random. It has been shown that the
seemingly random behaviour of PD can be analysed by
using chaos theory as a PD recognition tool [3].

In this paper, PD signals, which were denoised and
normalized by wavelet transform, are transformed to
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surrogate data, and Takens embedding theory is used for
attractor reconstruction of chaos theory following deciding
time delay and embedding dimension. Although the
orthogonal axis of the attractor increases according to the
magnitude and the number of partial discharges, fault
classification of GIS is complex. Therefore, singular value
decomposition (SVD) and the principal component
analysis (PCA) method are used to extract the numerical
characteristics of the orthogonal axis of the attractor. The
comparative results of the orthogonal axis of the attractor
show that SVD is superior to PCA. Thus, we proposed the
condition monitoring method for GIS using SVD using
thousands of simulations to prove its accuracy and
effectiveness.

2, Chaos Theory

Fig. 1 shows the implementation process of chaos theory.
In Fig. 1(a), measured signals are classified into 4 types; a
constant signal after time passes, a periodic signal, a signal
having two independent frequencies, and an irregular
signal. To apply chaos theory to these signals, attractor
reconstruction (a geometrical analysis method of the
observed time series data) is necessary. Fig. 1(b) illustrates
Takens embedding theory. After accurately determining
time delay and embedding dimension, the time series data
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can be diagrammed as attractor reconstruction. The
attractor reconstruction of each time series is shown in Fig.
1(c). Respectively, the four signals from Fig. 1(a) contain
characteristics of fixed point attractor, limit cycle attractor,
torus attractor, and strange attractor. The dynamic
characteristics of a measured signal can be geometrically
defined by attractor reconstruction. Poincare surface,
depicted in Fig. 1(d), is used in the case if the strange
attractor. Poincare surface shows an attractor of complex
structure to plane. Thus, we can interpret self-similarity,
the Lyapunov exponent and the correlation dimension, just
as in Fig. 1(e). Generally, the chaotic signal consists of
fractal structure, with Lyapunov exponent larger than zero,
and correlation dimension as a real number. Lyapunov
exponent serves as proof of the chaotic nature of PD
phenomenon, describes qualitatively dynamic behaviour of
the attractor and is the average exponential rate at which
the nearby trajectories diverge or converge.

Poincare's Chaos

Attractor surface characteristics

Time series

Fractal
Structure

Lyapunov §:

Exponent |

Dimension
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Fig. 1 Implementation process of Chaos Theory

3. Attractor of Chaos Theory

The concept of attractors is central in the idea of the use
of chaos in PD recognition. In this paper, a defining
attractor is broad enough to include all the natural
candidates, but is restrictive enough to exclude the
imposters. An attractor is a set to which all neighboring
trajectories converge and a geometric form that
characterizes long term behaviour in the state space, that is,
it is what the behaviour of a dynamic system settles down
to or is attracted to. Stable fixed points and stable limit
cycles are examples [4].

3.1 Surrogate Data

Surrogate data is an ensemble of data sets similar to the
raw data. A method used to do this is to take a Fourier
transform of the raw data, randomize the phases, and then
invert the Fourier transform. The resulting time series will
have the same power spectrum as the raw data set, but will

in all other respects be random. Significance has been
proposed, which will allow for the detection of nonlinearity
and can be expressed as follows:

— (r _urs )
GTS
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Where r is the nonlinear exponent value of time series,
U, is an average value for a nonlinear exponent value of

the replacement data, and O is the standard deviation for

the nonlinear exponent value of the replacement data [5].
3.2 Attractor Reconstruction

The attractor is a very important concept in the
dynamical system. In chaotic systems, the attractor is
usually referred to as a “strange attractor” due to -its
complicated shape. The strange attractor embodies all the
dynamical properties of the system. Hence, if the attractor
is quantified, the dynamical system can be characterized.
There are two important parameters (embedding dimension
and time delay) for display coordinate embedding and
further application. Attractors that show the visual
characteristics of PDs are classified as fixed point
attractors, limit cycle attractors, torus attractors and strange
attractors.

3.2.1 Time Delay and Embedding Dimension

Appropriate time delay and embedding dimension in the
reconstruction process are important. If time delay is too
small, x(z) and x(r+r) are excessively correlated and

if time delay is too large, x(r) and x(r+7) are
uncorrelated as completely random variables. Therefore,
appropriate time delay is needed for phase space
reconstruction. In other words, the appropriate time delay

occurs when the coordinates x(t) and x(++7) are

independent but not completely uncorrelated so that they
can be regarded as independent coordinates in the
reconstructed phase space. The method to determine the
appropriate time delay used is the correlation integral
method suggested by Lidbert and Schuster. The correlation
integral can be expressed as follows [6]:

N N
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Where © is step function, x (i) and Xx(j) are the

points for ith and jth of the attractor, n is the number of
data, ris a radius between two points, and X (i) - X ()

is the Euclidean distance between two points. The method
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of time delay can be used when the correlation integral
becomes the first local minimum point.

To decide the embedding dimension, the False Nearest
Neighbor method (FNN), suggested by Kennel, is used [7].
FNN is the method that decides the embedding dimension
of the time series when the percentage of FNN gets near
zero [%]. FNN percentage is calculated by dividing the
FNN coefficient of each data by the total number of
attractors.

3.2.2 Takens Embedding Theory

Attractor reconstruction of the time series uses the
Takens embedding theory. If a time series is similar to
£,&,,,&, -, this method is reconstructed to an orbit of
attractor using the difference of the time delay. Definitely,
m dimension vector in m dimension space, like in equation
(3), is made from time series, ¢, , and time delay, 7 .

X; =680 Eivomnye)
X, = (52 ,52+¢ ’€2+(m—l)‘r)

X, = 9€t+(m—1)1-) ©)

Xy= (51\1 awa ’§N+(m-—1)‘r)

Where 7 istime delay and m is embedding dimension.

The time series, &;,&,,-:+,E;,-+, is expressed in one
dimension. Applying the time delay and the embedding
dimension is done using the method to express the phase
plane concerning the signal of the measured system.
Therefore, m dimension vector will cause each coordinate
and phase plane trajectory to connect this point. Fig. 2 shows
the attractor reconstruction in the phase plane applying the
time delay, 7 ,and the embedding dimension, m.

Fig. 2 Attractor reconstruction using Takens embedding
theory

4. SVD and PCA
4.1 SVD (Singular Value Decomposition)

SVD of a rectangular matrix A is a decomposition of the
form:

A=UZVT 4

Where UTU=VTV=I,, and Z=diag(°'1v""°'n)'°'i >0 for
1<i<r,0;=0 for j>r+1. The first rcolumns of the

orthogonal matrices U and V define the orthonormal
eigenvectors associated with the r nonzero eigenvalues
of AAT and AT A, respectively. The columns of U and
v are referred to as the left and right singular vectors,
respectively, and the singular values of A are the diagonal
elements of the nonnegative square roots of the n
eigenvalues of AA” . As defined by the equation, the SVD
is used to represent the original relationships among terms
and documents as sets of linearly independent vectors or
factor values. Using k factors or the k largest singular
values and corresponding singular vectors, it is possible to
encode the original term-by-document matrix as a smaller
collection of vectors in & space for conceptual query
processing.

4.2 PCA (Principal Component Analysis)

PCA is a technique widely used in the statistical
community, primarily for descriptive but also for
inferential purposes. It is often used to create a projection
of multivariate data onto a space of lower dimensionality
while attempting to preserve as much of the structural
nature of the data as possible.

Let w = (w,,-,w,) be a N dimensional weight vector

containing all the weights in a network W € RY . The
weights are collected sequentially into this vector, from an
input unit to each hidden unit in turn and from a hidden
unit to each output (assuming there is a bias unit after the
last normal node in the input and hidden layers). The
training process produces a trajectory (data set) of points
Wi, j=1...s in weight space, on which PCA can be
performed. This can be achieved by calculating the
N x N covariance matrix Y, of this trajectory.

S=Y WS WS -y )
=l

Where W isthemean W =1/s FPIVJ
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The eigensystem of Y is then found, providing a new set
of basis vectors and a coordinate system. To reduce the
dimensionality of the weight space to the value d < N,
the d largest eigenvalues and corresponding eigenvectors
are chosen and the remaining N - d values are discarded.
Performing this dimensionality reduction results in the
smallest possible loss of variance information, for any
other similarly defined choice of basis vectors. The
direction of greatest variance in the data is given by the
first principal component (eigenvector) V,, corresponding

to the largest principal value (eigenvalue) 2, .

5. The Condition Monitoring Method for GIS
5.1 Time Series Analysis using Chaos Theory

5.1.1 Generation of Surrogate Data

Fig. 3 shows a denoised and normalized signal using
wavelet transform of a PD signal. If an attractor
reconstruction using this signal is made, it is complicated
to extract the characteristics of the PD. This signal is
difficult to reconstruct as an attractor because it has no
inner structure. Fig. 4 shows the surrogate data made through
phase randomization, which have linear characteristics and
are useful to reconstruct as an attractor.
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5.1.2 Decision of Time Delay and Embedding
Dimension

Fig. 5 shows the simulation result for deciding time
delay. We determined that time delay is 1 owing to the use
of the correlation integral. Also, the embedding dimension
is 2 to extract the characteristics of an attractor. Although it
is difficult to extract characteristics greater than three
dimensions, it is useful because of the function of Poincare
surface.

5.1.3 Attractor Reconstruction

When we express PD in a phase plane, an attractor
reconstruction of Takens embedding theory substituting
time delay and embedding dimension is made. The
simulation results indicated that the variance of an
orthogonal axis in an attractor increases according to the
magnitude and the number of partial discharges. Fig.s 6 to
9 show PD attractors, respectively, reconstructed 2-
dimensionally using Takens embedding theory, with a time
delay of 1, and an embedding dimension of 2. It can be
seen, from the shapes in Fig.s 6 to 9, that the attractors are
of straight line type. Hence, Fig.s 6 to 9 are normal GIS. In
this case, the shape of an attractor with normal GIS is closed,
has a central axis of 45°, and a very low orthogonal axis.

Fig. 10 shows attractor reconstruction in which PD is
large and has three occurrences. Fig.s 11, 12, and 13 depict
attractor reconstruction in which PD is large. Furthermore,
Fig. 13 shows attractor reconstruction in which PD has
eleven occurrences. When comparing these with attractors
of normal GIS, we can see that the orthogonal axis of the
attractors is increasing.

In addition, Fig.s 14 through 17 show simulation results
with extreme PD. In attractor reconstruction, the
orthogonal axis greatly changed and these Fig.s show that
the orthogonal axis increased more than in the former
simulation results. The shapes of the attractor are either
line type or globe type.

When an attractor was reconstructed, we realized that
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the orthogonal axis increased according to the magnitude
and the number of PDs. Therefore, calculation of the
orthogonal axis of an attractor in chaos theory and fault
classification, using the calculated value, is possible. The
occurrence of PD was discerned.
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Fig. 10 Attractor reconstruction using measured signal of
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Fig. 11 Attractor reconstruction using measured signal of
6301DS at SW GIS
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Fig. 17 Attractor reconstruction using measured signal of
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5.2 The Condition Monitoring Method for GIS using
SVD

Fig. 18 shows the condition monitoring method for GIS
using SVD suggested in this paper. The measured signal is
denoised and normalized owing to external noise. Then, this
denoised and normalized signal is transformed to surrogate
data for attractor reconstruction. After deciding time delay and
embedding dimension, the attractor is reconstructed by Takens
embedding theory. The orthogonal axis of an attractor
increases according to the magnitude and the number of PDs.
At attractor reconstruction from Fig. 6 through 17, the
secondary singular value of the variance of the orthogonal axis
using SVD is shown in Table 1. Furthermore, Fig. 19 depicts
correlation between the PD number and the secondary value.
The region of the secondary singular value is determined and
demonstrated in Fig. 18. If the secondary singular value is
smaller than or equal to 0.4, GIS is in normal state and should
be continuously observed. If the secondary singular value is
larger than 0.4, it should be estimated that the secondary value
is smaller than or equal to 0.7. If the secondary singular value
is smaller than or equal to 0.7, a buzzer sounds and if the
secondary singular value is larger than 0.7, the operator is
flagged. Thus, it is useful to fault classification through
variance calculations of the orthogonal axis using SVD. This
algorithm demonstrated high reliability because the results of
calculations using SVD are superior to those using PCA and
this has been proven through thousands of simulations.
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Fig. 18 Flow chart of condition monitoring method for
GIS using SVD

iy singular value

o 5 10 15
The number of PD

Fig. 19 Correlation of PD number and secondary singular value
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Table 1 The Secondary Singular Value By SVD

5.2 The Condition Monitoring Method for GIS using

Area Position The number | The secondary PCA
of actual PDs | singular value
WA 6232ADS 0 0.1057 The calculated results concerning variance of orthogonal
SCp 611DS 0 0.2584 axis in an attractor using PCA are shown in Table 2.
cYy 622DS 0 0.0928 Furthermore, Fig. 20 presents the correlation of PD number
GY 697CB 1 0.2398 and eigenvalue. Also, the flow chart of the condition
WA 611BDS 3 0.6998 monitoring method for GIS using PCA is the same as
SW 6301DS 5 0.6751 , o '
) G1GBDS 5 05939 displayed in Fig. 18 except that S, <0.4 is replaced
D 616DS 11 0.6191 with A using PCA, and §, <0.7 is omitted. It is
SGS 6100CB Many 10.7792 difficult to grasp the PD occurrence because the eigenvalue
WA 682DS Many 6.2647 . .
WY #IBUS Many 35514 of the PP is small and random according to the number and
wY 6100CB Many 6.3992 the magnitude of PDs.
Table 2 The Eigenvalue By PCA Table 3 The .se.cox.xdary singular value region for fault
classification
Area Position The number eigenvalue : :
of actual PDs Region of the secondary singular value State
WA 6232ADS 0 0.0000 0<S, <04 Normal
SCP 611DS 0 0.0000
CY 622DS 0 0.0000 04<S5,<07 Caution
GY 697CB 1 0.0000 07<S, Fault
WA 611BDS 3 0.0000
SW 6301DS 5 0.0005
HD 616BDS 5 0.0001 °7
ID 616DS 11 0.0100 s
SGS 6100CB Many 0.0044 PLL
WA 682DS Many 0.0019 g
wY #1BUS Many 0.0013 3
WY 6100CB Many 0.0012 £
o2 r
001 o
0009 BD 5 10 15 20 25 30 35 40 a5

ouozL
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Fig. 20 Correlation of PD number and eigenvalue by PCA
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Fig. 21 Correlation of PD number and the secondary value

The number of PD

Fig. 22 Correlation of PD number and eigenvalue

6. Simulation Results and Discussion
6.1 Fault Classification for GIS using SVD

Simulation results using SVD, as shown in Table 4,
indicate that the secondary singular value of normal GIS,
where PD doesn’t occur, is small, and that the secondary
singular values of fault GIS is large in that the magnitude
and the number of PDs are extreme. As the number of PDs
increase, the secondary singular value also increases and
Fig. 21 shows the correlation of the secondary singular
value and the number of PDs. A few PDs can have large
secondary singular values because the secondary singular
value contains information regarding the number and the
magnitude of the PD. Table 3 shows the region of the
secondary singular value for fault classification.
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Table 4 Simulation results Using SVD

Table 5 Simulation results using PCA

The The . The number .
State Area Position number of Se.c ondary Area Position of actual PDs cigenvalue

actual singular

PDs value MC 6231DS 0 0.0000

MC 6231DS 0 0.1938 WA 6232ADS 0 0.0000

WA | 6232ADS 0 0.1057 WA 6232CDS 0 0.0001

WA | 6232CDS 0 0.3865 HD 617CB 0 0.0000

HD 617CB 0 0.2225 SCP 611DS 0 0.0000

SCP 611DS 0 0.2584 SC 6100CB 0 0.0000

Normal SC 6100CB 0 0.2726 cY #BUS 0 0.0000

cy #BUS 0 0.2149 cY 622DS 0 0.0000

cY 622DS 0 0.0928 CcY 622BDS 0 0.0000

CY 622BDS 0 0.1281 cYy 622ADS 0 0.0000

cYy 622ADS 0 0.0942 WL 617CB 0 0.0000

WL 617CB 0 0.2422 HD 616ADS 1 0.0000

Caution HD 616ADS 1 0.4163 GY 697CB 1 0.0000

GY 697CB ! 0.2398 WA 6232BDS 1 0.0004

Normal WA | 6232BDS 1 0.3702 WA €IS 1 0.0000

WA | 611DS 1 02490 MC 6331DS 2 0.0000

MC 6331DS 2 0.2655 WA 1B 3 5.0000

Caution WA 611B 3 0.6998 GS 622DS 3 0.0000

[ S B

SW 6301DS 5 0.0005

Caution SwW 6301DS 5 0.6751 ) SI6BDS S 0001
HD 616BDS 5 0.5939

WL 612DS 6 0.0001

Normal WL 612DS 6 1.7611 Sop 535CE T 30001

Fault SCP | 6233CB 10 07015 WA 642DS 10 0.0000
WA 642DS 10 0.7521

Caution D 616DS 1 0.6191 b 616DS 1 0.6100

scp | 6100cB 3 0.3697 SCP 6100CB 13 0.0004

D A7CB T 08374 CD 647CB 13 0.0000

Gs | 6100BUS " 03374 GS 6100BUS 14 0.0001

HD | 616CDS 15 1.8397 HD 616CDS 15 0.0014

Fault D 626DS 17 09172 D 626DS 17 0.0032

YL 637DS o1 13320 YL 637DS 21 0.0001

sC 622DS 32 0.8216 SC 622DS 32 0.0000

HD | 611DS Many 232827 HD 611DS Many 0.0206

SGS GA4ACB Many 98516 SGS 644CB Many 0.0239

SGS 641DS Many 55044 SGS 641DS Many 0.0102

SGS | 6100CB Many 10.7792 SGS 6100CB Many 0.0044

SGS 6101DS Many 1.8323 SGS 6101DS Many 0.0042

SC 6232DS Many 20.1385 SC 6232DS Many 0.0126

GC | LsenceAll | Many 10.3578 GC LsenceAll Many 0.0004

Fault WA | 682DS Many 6.2647 WA 682DS Many 0.0019

SW 6131DS Many 44739 SwW 6131DS Many 0.0001

D 611DS Many 2.6521 D 611DS Many 0.0102

WY #1BUS Many 3.5514 wY 1#BUS Many 0.0013

wY 6100CB Many 6.3992 wY 6100CB Many 0.0012
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6.2 Fault Classification for GIS using PCA

Table 5 shows the simulation results using PCA. As the
number of PDs increase, the eigenvalue doesn’t increase
and Fig. 22 shows the correlation of the eigenvalues and
the number of PDs. The eigenvalue of normal GIS is
0.0000 and the eigenvalue of fault GIS is also small. Hence,
it is impossible to decide fault or normal state because the
eigenvalue isn’t constant.

In the simulation results, the calculation of the orthogonal
axis in an attractor showed that SVD is superior to PCA and
the proper establishment of the region of the secondary
singular value using SVD is important for validity.

7. Conclusion

Detection of PD as the condition monitoring method for
GIS is useful and many research outcomes concerning it
are being reported. In this paper, we proposed the condition
monitoring method for GIS using SVD in an attractor of
chaos theory that was actively applied to the engineering
field. Surrogate data has been compiled for attractor
reconstruction of PD data. Once it was established that
time delay is 1 and embedding dimension is 2, we could
confirm that the variance of orthogonal axis increases in
attractor reconstruction, as per Takens embedding theory.
Simulation results using SVD and PCA indicated that SVD
is superior to PCA. We proposed a reliable algorithm
through simulation of numerous actual data as properly
established regions of the secondary singular value.
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