• Title/Summary/Keyword: State space equation model

Search Result 144, Processing Time 0.035 seconds

Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery (리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구)

  • Han, Seungyun;Park, Jinhyeong;Park, Seongyun;Kim, Seungwoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

Maneuvering Target Tracking Using Multiresolutional Interacting Multiple Model Filter

  • Yu, C,H.;Choi, J.W.;Song, T.L.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2340-2344
    • /
    • 2003
  • This paper considers a tracking filter algorithm which can track a maneuvering target. Multiresolutional Interacting Multiple Model (MRIMM) algorithm is proposed to reduce computational burden. In this paper multiresolutional state space model equation and multiresolutional measurement equation are derived by using wavelet transform. This paper shows the outline of MRIMM algorithm. Simulation results show that MRIMM algorithm maintains a good tracking performance and reduces computational burden.

  • PDF

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

Dynamic Response of Coupled Maglev Train and Guideway System (자기부상열차-가이드웨이 통합 시스템의 동적 특성)

  • Kong, Eun-Ho;Kang, Bu-Byoung;Na, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.137-145
    • /
    • 2011
  • This study is proposed to develop a numerical interaction model of the magnetically levitated(maglev) train and guideway. For this purpose, equation of motion for 6-DOF vehicle model, EMS, guideway and guideway irregularity are derived as the state-space equation. In order to solve the state space equations, the present work was performed via matlab simulation using Runge-Kutta method. Through the simulation, the effect of dynamic response of maglev system to different vehicle speeds, guideway rigidity(EI) and masses is investigated.

Parameter Space Restriction in State-Space Model (상태 공간 모형에서의 모수 공간 제약)

  • Jeon, Deok-Bin;Kim, Dong-Su;Park, Seong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • Most studies using state-space models have been conducted under the assumption of independently distributed noises in measurement and state equation without adequate verification of the assumption. To avoid the improper use of state-space model, testing the assumption prior to the parameter estimation of state-space model is very important. The purpose of this paper is to investigate the general relationship between parameters of state-space models and those of ARIMA processes. Under the assumption, we derive restricted parameter spaces of ARIMA(p,0,p-1) models with mutually different AR roots where $p\;{\le}\;5$. In addition, the results of ARIMA(p,0,p-1) case can be expanded to more general ARIMA models, such as ARIMA(p-1,0,p-1), ARIMA(p-1,1,p-1), ARIMA(p,0,p-2) and ARIMA(p-1,1,p-2).

  • PDF

The Analysis of the Optimal Control Problem for the System with the Generalized State Space Model (일반화된 상태모델로 주어진 시스템의 최적제어문제 해석)

  • Lee, Kwae-Hi
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.12
    • /
    • pp.491-496
    • /
    • 1984
  • The optimal control and filtering problems for the systems with the generalized state space model are considered and the generalized Riccati equation is derived. Also the algorithm for the solution of the generalized algebraic Riccati equation is developed and it is shown that the algotithm can be applied to the case where the matrix R is singular or near singular.

  • PDF

Grouping stocks using dynamic linear models

  • Sihyeon, Kim;Byeongchan, Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.695-708
    • /
    • 2022
  • Recently, several studies have been conducted using state space model. In this study, a dynamic linear model with state space model form is applied to stock data. The monthly returns for 135 Korean stocks are fitted to a dynamic linear model, to obtain an estimate of the time-varying 𝛽-coefficient time-series. The model formula used for the return is a capital asset pricing model formula explained in economics. In particular, the transition equation of the state space model form is appropriately modified to satisfy the assumptions of the error term. k-shape clustering is performed to classify the 135 estimated 𝛽 time-series into several groups. As a result of the clustering, four clusters are obtained, each consisting of approximately 30 stocks. It is found that the distribution is different for each group, so that it is well grouped to have its own characteristics. In addition, a common pattern is observed for each group, which could be interpreted appropriately.

Investigation of Thermophysical Properties of the Kerosene Using the Surrogate Model Fuel at Supercritical Conditions (초임계 영역에서 대체 모델 연료를 이용한 케로신의 열역학적 상태량 연구)

  • Kim, Kuk-Jin;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.823-833
    • /
    • 2010
  • For the study of thermophysical properties of kerosene for the liquid rocket and aviation fuels, the surrogate models are investigated. The density distributions based on the real gas equations of state(Soave modification of Redlich-Kwong and Peng-Robinson equation of state) and NIST SUPERTRAPP(extended corresponding state principle) are compared with the previous experimental results at supercritical conditions. The error range of thermophysical properties analyzed for the surrogate models as well. Peng-Robinson equation of state and extended corresponding state principle are especially accurate for the hydrocarbon fuels but the appropriate surrogate models need to be chosen to the operation conditions such as pressure and temperature.

Research on the Design of Helicopter Nonlinear Optimal Controller using SDRE Technique (SDRE 기법을 이용한 헬리콥터 비선형 최적제어기 설계 연구)

  • Yang, Chang-Deok;Kim, Min-Jae;Lee, Jung-Hwan;Hong, Ji-Seung;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1152-1162
    • /
    • 2008
  • This paper deals with the State-Dependent Riccati Equation (SDRE) technique for the design of helicopter nonlinear flight controllers. Since the SDRE controller requires a linear system-like structure for nonlinear motion equations, a state-dependent coefficient (SDC) factorization technique is developed in order to derive the conforming structure from a general nonlinear helicopter dynamic model. Also on-line numerical methods of solving the algebraic Riccati equation are investigated to improve the numerical efficiency in designing the SDRE controllers. The proposed method is applied to trajectory tracking problems of the helicopter and computational tips for a real time application are proposed using a high fidelity rotorcraft mathematical model.

An INS Filter Design Considering Mixed Random Errors of Gyroscopes

  • Seong, Sang-Man;Kang, Ki-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • We propose a filter design method to suppress the effect of gyroscope mixed random errors at INS system level. It is based on the result that mixed random errors can be represented by a single equivalent ARMA model. At first step, the time difference of equivalent ARMA process is performed, which consider the characteristic of indirect feedback Kalman filter used in INS filter. Next, a state space conversion of time differenced ARMA model is achieved. If the order of AR is greater than that of MA, the controllable or observable canonical form is used. Otherwise, we introduce the state equation of which the state variable is composed of the ARMA model output and several step ahead predicts of that. At final step, a complete form state equation is presented. The simulation results shows that the proposed method gives less transient error and better convergence compared to the conventional filter which assume the mixed random errors as white noise.

  • PDF