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Abstract: This paper considers a tracking filter algorithm which can track a maneuvering target. Multiresolutional Interacting

Multiple Model (MRIMM) algorithm is proposed to reduce computational burden. In this paper multiresolutional state space

model equation and multiresolutional measurement equation are derived by using wavelet transform. This paper shows the

outline of MRIMM algorithm. Simulation results show that MRIMM algorithm maintains a good tracking performance and

reduces computational burden.
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1. Introduction
Multiresolutional signal processing has been employed in

image processing and computer vision to achieve improved

performance that cannot be achieved using conventional sig-

nal processing techniques at only one resolution level. Mul-

tiresolutional estimation with applications to multiresolu-

tional sensor fusion has been investigated by Hong [1]. In

[1], measurements are available at each resolution level and

the estimates from each level are integrated using the wavelet

transform. In this paper the multiresolutional approach is

applied to the area of target tracking where measurements

are available at only one resolution level. The multiple-

model algorithm for tracking maneuvering targets is chosen

to demonstrate the effectiveness of the multiresolutional ap-

proach and novel results are achieved.

The key ingredients in the multiresolutional approach are

multiresolutional modeling and multiresolutional measure-

ments. Although only uniform resolutional measurements

are available here, the multiresolutional measurments are

calculated by utilizing the wavelet transform [2]. It is true

that the calculated measurements at coarser levels do not

contain more information than the original measurements.

However, when decomposed into lower resolutional levels and

due to the effect of ”lowpass filtering” of the wavelet trans-

form, the noise is greatly attenuated and the behavior of the

maneuver becomes obvious.

The greatest concern regarding the use of wavelet trans-

form related approaches in the target tracking area is the

capability of real-time processing. Hong [3] developed a true

real-time algorithm. A tree-like data structure was intro-

duced in which the bottom level of the tree corresponded

to the highest resolution level and the top level of the tree
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represented the coarsest resolution level. The tree was grow-

ing and moving as new measurements were acquired and the

front branches of the tree were associated with the real-time

filtering process.

When a target is in a quiescent motion, the filtering needs

not to be performed with maximum process power since the

states of a target vary relatively slowly than the time when a

target is maneuvering. On the other hand, the measurements

process should be performed at as fast rate as possible to

maintain the tracking error at some reliable standard or not

to lose a track while a target is maneuvering.

In this paper, the MRIMM (multiresolutional interacting

multiple model) filter is proposed. When a target is in a qui-

escent motion, we consider low resolutional measurements by

using wavelet transform for computational load saving and

consider original resolutional measurements while a target is

maneuvering.

2. Discrete wavelet transform
For a sequence of scalar deterministic signals x(i, n) ∈

l2(Z), n ∈ Z at resolution level i, a lower resolution signal

can be derived by low-pass filtering with a half-band low-pass

filter having an impulse response h(n). A sequence of the

lower resolution signal (indicated by an index L) is obtained

by downsampling the output of the low-pass filter by two:

xL(i + 1, n) =
∑

k

h(2n− k)x(i, k) (1)

An ”added detail” also called wavelet coefficients, which is

a complement to xL(i + 1, n) and is denoted xH(i + 1, n),

can be computed by first using a high-pass filter with an

impulse response g(n) and then downsampling the output of

the high-pass filtering by two. The added detailed is given

by

xH(i + 1, n) =
∑

k

g(2n− k)x(i, k) (2)
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Fig. 1. Sampling and processing rate
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Fig. 2. Sampling and processing rate

The original signal x(i, n) can be recovered from the two

filtered and downsampled (lower resolution) signals xL(i +

1, n) and xH(i + 1, n). Filters h(n) and g(n) must meet

some constraints in order to produce a perfect reconstruction

for the signal. In addition to the regularity constraint [4],

one constraint is that the filter impulse responses form an

orthonormal set. Therefore, (1) and (2) can be considered

as a decomposition of the original signal onto an orthonormal

basis, and the reconstruction

x(i, n) =
∑

k

h(2k − n)xL(i + 1, k)

+
∑

k

g(2k − n)xH(i + 1, k) (3)

can be considered as a sum of the orthogonal projections.

The operation defined by (1) and (2) is called the forward

wavelet transform (or wavelet transform for short), and the

inverse wavelet transform is described by (3).

The discrete wavelet transform can be implemented by an

octave-band filter bank, as shown in Fig. 1 where only three

levels are depicted. The dimensions of different decomposed

signals at different levels are shown in Fig. 2.

For a sequence of deterministic signals with a finite

length, it is more convenient to describe the wavelet trans-

form in an operator form. Consider a sequence of signals at

resolution level i with length M :

Xi
k =




x(i, k −M + 1)

x(i, k −M + 2)
...

x(i, k)


 (4)

The vector form of (1) and (2) can be derived in the following

operator form:

Xi+1
kL

= Hi+1Xi
k (5)

Xi+1
kH

= Gi+1Xi
k (6)

Similarly, when mapping from level i + 1 to level i, (3) can

also be written in operator form as

Xi
k =

(
Hi+1

)T
Xi+1

kL
+

(
Gi+1

)T
Xi+1

kH
(7)
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where ()T is the matrix transpose operation.

A simultaneous multilevel signal decomposition can be

carried out by a filter bank. For instance, to decompose Xi
k

into three levels, as shown in Fig. 2, the following decompo-

sition transform can be applied:




Xi+3
kL

Xi+3
kH

Xi+2
kH

Xi+1
kH


 = T i+3|iXi

k (8)

where

T i+3|i =




Hi+3Hi+2Hi+1

Gi+3Hi+2Hi+1

Gi+2Hi+1

Gi+1


 (9)

is an orthogonal matrix mapping Xi
k onto three levels of the

filter bank simultaneously.

3. MRIMM filter
The conventional IMM (interacting multiple model) filter

[5] has been implemented using models of different dimen-

sion, a second-order model for the quiescent model of the

target and one or two third-order models for the maneuver-

ing mode with different process noise levels. The approach

consists of running a filter for each model, a model probabil-

ity evaluator, and an estimate combiner at the output of the

filters. Each filter uses a mixed estimate at the beginning of

each cycle.

While the IMM filter uses full-rate filtering, MRIMM fil-

ter uses both full-rate and half-rate filtering. In MRIMM

filter, one sub-filter for constant velocity model uses half-

rate measurements by using wavelet transform to reduce a

computational load, other sub-filter for constant acceleration

model uses full-rate measurements, as shown in Fig. 3. And

the initial value at each sampling time can be achieved as

shown in Fig. 4.

And one cycle of the MRIMM filter consists of 4 steps

such as interacting step, Kalman filtering, calculating the

model probability, and combining the estimates of the each

sub-filters.

3.1. Multiresolutional measurements and models

The system with a high rate si given by

x(i, k + 1) = Ax(i, k) + w(i, k) (10)

z(i, k) = Cx(i, k) + v(i, k) (11)
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where

E [w(i, k)] = 0, E
[
w(i, k)w(i, k)T

]
= Q(i, k) (12)

E [v(i, k)] = 0, E
[
v(i, k)v(i, k)T

]
= R(i, k) (13)

E [v(i, k)w(i, k)] = 0 (14)

A set of different low rate models can be derived recursively

from the high rate model given in Eqs. (10) and (11). To

simplify the discussion, in the following we will use two-

tap Harr filter. The first-level lowpass filtered measurement

zL(i + 1, k) is derived by

zL(i + 1, k) = h1z(i, k − 1) + h2z(i, k) (15)

where [h1 h2] = H is a two-tap Haar lowpass filter. Sub-

stituting measurement model (11) into Eq. (15) results in a

first-level low rate model for lowpass filtered measurements

zL(i + 1, k) = C1xL(i + 1, k) + vL(i + 1, k) (16)

where

xL(i + 1, k) = h1x(i, k − 1) + h2x(i, k) (17)

C1 = C (18)

and

vL(i + 1, k) = h1v(i, k − 1) + h2v(i, k) (19)

with

E [vL(i + 1, k)] = 0 (20)

RL(i + 1, k) =
[
vL(i + 1, k)vL(i + 1, k)T

]

= h2
1R(i, k − 1) + h2

2R(i, k) (21)

The first-level low rate system model is

xL(i + 1, k + 1) = A1xL(i + 1, k) + wL(i + 1, k) (22)

where

A1 = (A)2 (23)

and

E [wL(i + 1, k)] = 0 (24)

QL(i + 1, k) =
[
wL(i + 1, k)wL(i + 1, k)T

]

= h2
1AQ(i, k − 1)AT (25)

+(h1I + h2A)Q(i, k)(h1I + h2A)T

+h2
2Q(i, k + 1)

The other level low rate models can be derived recursively

as

xL(j, k + 1) = AjxL(j, k) + wL(j, k) (26)

zL(j, k) = CjxL(j, k) + vL(j, k) (27)

where

Aj =
(
Aj−1

)2
(28)

Cj = Cj−1 (29)

The noise statistics of wL(j, k) and vL(j, k) are derives as

E [wL(j, k)] = 0 (30)

QL(j, k) = E
[
wL(j, k)wL(j, k)T

]

= h2
1A

j−1QL(j − 1, k − 1)(Aj−1)T (31)

+(h1I + h2A
j−1)QL(j − 1, k)(h1I + h2A

j−1)T

+h2
2QL(j − 1, k + 1)

and

E [vL(j, k)] = 0 (32)

RL(j, k) = E
[
vL(j, k)vL(j, k)T

]

= h2
1RL(j − 1, k − 1) + h2

2RL(j − 1, k) (33)

3.2. Interacting step

Initial estimate can be derived by

x̂t(k − 1|k − 1)ini = E
[
x(k − 1)|Mt(k), Zk−1

]

=

N∑
s=1

E
[
x(k − 1)|Ms(k − 1), Zk−1

]

×p
[
Ms(k − 1)|Mt(k), Zk−1

]
(34)

where as x(k − 1) is independent from Mt(k), following eq.

can be derived.

x̂t(k − 1|k − 1)ini =

N∑
s=1

x̂s(k − 1|k − 1)

×p
[
Ms(k − 1)|Mt(k), Zk−1

]
(35)

=

N∑
s=1

x̂s(k − 1|k − 1)µs|t(k − 1|k − 1)

where µs|t can be calculated as

µs|t(k − 1|k − 1) = p
[
Ms(k − 1)|Mt(k), Zk−1

= p
[
Mt(k)|Ms(k − 1), Zk−1

]
(36)

×p
[
Ms(k − 1)|Zk−1

]

p [Mt(k)|Zk−1]



Substituting Eq. (36) into Eq. (35) results in an initial

estimate

x̂t(k − 1|k − 1)ini =

N∑
s=1

x̂s(k − 1|k − 1)

×p
[
Mt(k)|Ms(k − 1), Zk−1

]
(37)

×p
[
Ms(k − 1)|Zk−1

]

p [Mt(k)|Zk−1]

Similarly, an initial error covariance matrix can be derived

as

Pt(k − 1|k − 1)ini =

N∑
s=1

µs|t(k − 1|k − 1)

×{Ps(k − 1|k − 1) (38)

+ [x̂s(k − 1|k − 1)− x̂t(k − 1|k − 1)ini]

× [x̂s(k − 1|k − 1)− x̂t(k − 1|k − 1)ini]
T
}

3.3. Kalman filtering

First, one cycle of the Kalman filter for state and covari-

ance estimation for the constant acceleration model is in the

following.

x̂t(k|k − 1) = Ax̂t(k − 1|k − 1) (39)

Pt(k|k − 1) = APt(k − 1|k − 1)AT + Q(k) (40)

x̂t(k|k) = x̂t(k|k − 1) + Gt(k)rt(k) (41)

Pt(k|k) = [I −Gt(k)C] Pt(k − 1|k − 1) (42)

rt(k) = z(k)− Cx̂t(k|k − 1) (43)

St(k) = CPt(k|k − 1)CT + R(k) (44)

Gt(k) = Pt(k|k − 1)CT St(k)−1 (45)

where, rt(k) is the residual, St(k) is the covariance for the

residual, Gt(k) is the filter gain.

And one cycle of the Kalman filter for the constant ve-

locity model is in the following.

x̂L(2, k|k − 1) = A1x̂L(2, k − 1|k − 1) (46)

PL(2, k|k − 1) = A1PL(2, k − 1|k − 1)(A1)T + QL(2, k) (47)

x̂L(2, k|k) = x̂L(2, k|k − 1) + GL(2, k)rL(2, k) (48)

PL(2, k|k) =
[
I −GL(2, k)C1

]
PL(2, k − 1|k − 1) (49)

rL(2, k) = zL(2, k)− C1x̂L(2, k|k − 1) (50)

SL(2, k) = C1PL(2, k|k − 1)(C1)T + RL(2, k) (51)

GL(2, k) = PL(2, k|k − 1)(C1)T SL(2, k)−1 (52)

3.4. Calculating the model probability

A model probability µt(k) of the target can be derived

by following Eq.

µt(k) = p
[
Mt(k)|Zk

= p
[
Mt(k)|z(k), Zk−1

]

=
p
[
z(k)|Mt(k), Zk−1

]
p
[
Mt(k)|Zk−1

]

p [z(k)|Zk−1]

= p
[
z(k)|Mt(k), Zk−1

]
(53)

×
N∑

s=1

p
[
Mt(k)|Ms(k − 1), Zk−1

]

×p
[
Ms(k − 1)|Zk−1

]

p [z(k)|Zk−1]

3.5. Combining the estimates

The estimate at every sampling time from each sub-filters

is derived as

x̂(2k|2k) = x̂1(2, 2k|2k − 1) [1− µ2(2k)]

+x̂2(2k|2k)µ2(2k) (54)

P (2k|2k) = [1− µ2(2k)]

×{P1(2, 2k|2k − 1) + [x̂1(2, 2k|2k − 1)− x̂(2k|2k)]

× [x̂1(2, 2k|2k − 1)− x̂(2k|2k)]
T
}

+µ2(2k) (55)

×{P2(2k|2k) + [x̂2(2k|2k)− x̂(2k|2k)]

× [x̂2(2k|2k)− x̂(2k|2k)]
T
}

P (2k + 1|2k + 1) = [1− µ2(2k + 1)] {P1(2, 2k|2k − 1)

+ [x̂1(2, 2k + 1|2k + 1)− x̂(2k + 1|2k + 1)]

× [x̂1(2, 2k + 1|2k + 1)− x̂(2k + 1|2k + 1)]
T
}

+µ2(2k + 1) {P2(2k|2k − 1) (56)

+ [x̂2(2k + 1|2k + 1)− x̂(2k + 1|2k + 1)]

× [x̂2(2k + 1|2k + 1)− x̂(2k + 1|2k + 1)]
T
}

4. Simulation results
This section highlights some of the results of a Monte

Carlo comparision between the IMM and MRIMM algo-

rithms.

4.1. Target scenario and parameter configuration

Initial position of the target is 0m and initial velocity is

−250m/sec, and initial acceleration is 0m/sec2. Maneuver

of 20m/sec2 occurs between 30sec and 60sec. Sampling time

is set to 1sec.

Process noise variances are set to q2
c (k) = 22m2/sec4 and

q2
m(k) = 32m2/sec4, and measurement noise covariance is

set to 122m2. And model transition probability is set to

pjump =

[
0.85 0.15

0.15 0.85

]
(57)

4.2. Comparative results

Fig. 5 shows a RMS estimate position error. As shown

in Fig. 5, the estimate error of MRIMM is similar to the

estimate of conventional IMM. However, Table 1 shows that

the computational load of MRIMM is lower than the IMM

by 20
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Table 1. Computational load

IMM MRIMM

Flops 5,291,193 4,232,954

Percentage 100% 80%

5. Conclusions
In this paper, a theoretical foundation for MRIMM tar-

get tracking is established. Based on the discrete wavelet

transform, a set of multiresolutional models has been devel-

oped which make the MRIMM possible. The algorithm, in

general, outperforms the full-rate IMM for nonmaneuvering

targets and performs comparably for maneuvering targets.

Computational savings are achieved.
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