• Title/Summary/Keyword: State parameter

Search Result 1,840, Processing Time 0.034 seconds

Unknown-Parameter Estimation of Electric-Hydraulic Servo Cylinder Based on Measurements (측정 데이터 기반 전기-유압 서보 실린더의 미지 변수 추정)

  • Seung, Ji Hoon;Yoo, Sung Goo;Seul, Nam O;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Electric-hydraulic sever cylinders are used in many offshore applications such as wind energy farms, solar farms and plants. Jack-up barges are often used for these offshore system operations. Jack-up barge control is up/down by hydraulic cylinder position control. Working in harsh environments can lead to changes in internal parameters. This nonlinearity makes precise control difficult. In order to overcome the problems, we proposed a method of unknown-parameter estimation algorithm based on measurements obtained by system. In this paper, we employee Unscented Kalman filter (UKF) to estimate states and unknown-parameter from augmented nonlinear equation. Performance of estimation results is verified in simulation on an environments of Matlab. The estimation results of the state and unknown-parameter show that the estimation error of unknown-parameter is reduced according to decreasing the state estimation error.

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

A COMPARATIVE EVALUATION OF THE ESTIMATORS OF THE 2-PARAMETER GENERALIZED PARETO DISTRIBUTION

  • Singh, V.P.;Ahmad, M.;Sherif, M.M.
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.155-173
    • /
    • 2003
  • Parameters and quantiles of the 2-parameter generalized Pareto distribution were estimated using the methods of regular moments, modified moments, probability weighted moments, linear moments, maximum likelihood, and entropy for Monte Carlo-generated samples. The performance of these seven estimators was statistically compared, with the objective of identifying the most robust estimator. It was found that in general the methods of probability-weighted moments and L-moments performed better than the methods of maximum likelihood estimation, moments and entropy, especially for smaller values of the coefficient of variation and probability of exceedance.

  • PDF

A Note on Estimating Parameters in The Two-Parameter Weibull Distribution

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1091-1102
    • /
    • 2003
  • The Weibull variate is commonly used as a lifetime distribution in reliability applications. Estimation of parameters is revisited in the two-parameter Weibull distribution. The method of product spacings, the method of quantile estimates and the method of least squares are applied to this distribution. A comparative study between a simple minded estimate, the maximum likelihood estimate, the product spacings estimate, the quantile estimate, the least squares estimate, and the adjusted least squares estimate is presented.

  • PDF

State-Space Model Based On-Line Parameter Estimation for Time-Delay Systems

  • Choi, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.5-76
    • /
    • 2001
  • This paper considers the parameter estimation for the state-space model based time-delay systems in the case that the Lyapunov stability of the system is guaranteed. In order to estimate the parameters, two estimation methods can be proposed which are known as the parallel model and the series parallel model. It is shown that the parameters can be estimated using each method, and also certied that the results are correct by simulations.

  • PDF

Evaluation of State Parameter of Sands Using Dilatometer Test (딜라토미터 시험을 이용한 사질토의 상태정수 평가)

  • Choi, Sung-Kun;Lee, Moon-Joo;Hong, Sung-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.27-36
    • /
    • 2010
  • In this study, a series of flat dilatometer tests are performed for Busan sand reconstituted in a large calibration chamber to evaluate the state parameter ($\Psi$). Experimental result shows that the horizontal amplification factor ($K_D/K_0$) is linearly related with state parameter in semi-logarithmic space, but the $K_D/K_0$ of OC specimen is smaller than that of NC specimen because of the horizontal residual stress by stress history of OC specimen. The relation between the normalized dilatometer modulus ($E_D/\sigma_m'$) and the state parameter is also linearly expressed in semi-logarithmic space, and the effect of stress history is relatively insignificant in this relation. However, the variation in $E_D/\sigma_m'-\Psi$ relation of NC state is slightly higher than that of OC state due to the effect of the stress level, and the correlation curve is descending with increase of confining stress. The comparison of test result with previous results of Ticino and Toyoura sands shows that the $E_D/\sigma_m'-\Psi$ relation of Toyoura sand is located on upper side than that of Busan and Tieino sands due to the effect of the higher compressibility, whereas the $K_D/K_0-\Psi$ relation of each sand is irregularly distributed.

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor (고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석)

  • Jae Seung Kim;Jiwan, Seo;Kyu Hong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.24-34
    • /
    • 2022
  • In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

Real-Time Flood Forecasting Using Rainfall-Runoff Model(I) : Theory and Modeling (강우-유출모형을 이용한 실시간 홍수예측(I) : 이론과 모형화)

  • 정동국;이길성
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.89-99
    • /
    • 1994
  • Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of ø-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.

  • PDF

Guaranteed Cost Control of Parameter Uncertain Systems with Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • In this paper, we deal with the problem of designing guaranteed cost state feedback controller for the generalized time-varying delay systems with delayed state and control input. The generalized time delay system problems solved on the basis of LMI(linear matrix inequality) technique considering time-varying delays. The sufficient condition for the existence of controller and guaranteed cost state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed controller design method can be extended into the problem of robust guaranteed cost controller design method for parameter uncertain systems with time-varying delays easily.

  • PDF