The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.
Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.
In many cases the systems are so complex that it is not possible to obtain reasonable models using physical insight. Also a model based on physical insight contains a number of unknown parameters even if the structure is derived from physical laws. These problems can be solved by system identification. In this paper, Arago's disk system which has both stable and unstable regions is selected as an example for identification and a state-space model is identified using tailor-made model structure of this system. In stable region, a state-space model of Arago's disk system is identified through open loop experiment and a state-space model of unstable region is identified through closed loop experiment after using fuzzy controller to stabilize unstable system.
In this paper, a novel optimization algorithm which searches for the local minima of a given cost function is proposed using the familiar property of a binary string, and is applied to the parametric identification of a continuous-time state equation by the estimation of system parameters as well as initial state values. A simple electrical circuit severs as an example, whose precise identification results show the superiority of the proposed algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.8
/
pp.2764-2782
/
2021
Existing city-level boundary nodes identification methods need to locate all IP addresses on the path to differentiate which IP is the boundary node. However, these methods are susceptible to time-delay, the accuracy of location information and other factors, and the resource consumption of locating all IPes is tremendous. To improve the recognition rate and reduce the locating cost, this paper proposes an algorithm for city-level boundary node identification based on bidirectional approaching. Different from the existing methods based on time-delay information and location results, the proposed algorithm uses topological analysis to construct a set of candidate boundary nodes and then identifies the boundary nodes. The proposed algorithm can identify the boundary of the target city network without high-precision location information and dramatically reduces resource consumption compared with the traditional algorithm. Meanwhile, it can label some errors in the existing IP address database. Based on 45,182,326 measurement results from Zhengzhou, Chengdu and Hangzhou in China and New York, Los Angeles and Dallas in the United States, the experimental results show that: The algorithm can accurately identify the city boundary nodes using only 20.33% location resources, and more than 80.29% of the boundary nodes can be mined with a precision of more than 70.73%.
The loss of cable tension for civil infrastructure reduces structural bearing capacity and causes harmful deformation of structures. Currently, most of the structural health monitoring (SHM) approaches for cables rely on contact transducers. This paper proposes a cable tension identification technology using percussion sound, which provides a fast determination of steel cable tension without physical contact between cables and sensors. Notably, inspired by the concept of tensioning strings for piano tuning, this proposed technology predicts cable tension value by deep learning assisted classification of "percussion" sound from tapping a steel cable. To simulate the non-linear mapping of human ears to sound and to better quantify the minor changes in the high-frequency bands of the sound spectrum generated by percussions, Mel-frequency cepstral coefficients (MFCCs) were extracted as acoustic features to train the deep learning network. A convolutional neural network (CNN) with four convolutional layers and two global pooling layers was employed to identify the cable tension in a certain designed range. Moreover, theoretical and finite element methods (FEM) were conducted to prove the feasibility of the proposed technology. Finally, the identification performance of the proposed technology was experimentally investigated. Overall, results show that the proposed percussion-based technology has great potentials for estimating cable tension for in-situ structural safety assessment.
Journal of the Korean Society for Precision Engineering
/
v.11
no.1
/
pp.80-88
/
1994
In the automation of rigid parts mating process with the intelligent robots, Peg-In-Hole is the most available task since inserting is some analytic and needs suitable range of forces that can be controlled by induatrial manipulators. In this Peg-In-Hole process, it is very important to identify the contact state between tow parts, peg and hole, to build the strategies for robot motion that leads to avoid the jamming condition occurs during insertion process. In this paper, we adpopted 3 parameters for identification, lFzl, lFxy/Fzl, and lMxy/Fxyl, derived from axes value of Whitney's jamming diagram. Also, we defined the fuzzy membership functions for these parameters and developed the identification algorithm based on fuzzy inference method of max-product. As an experimental result, we obtained about 96% of identification ratio that could be raised up to industrial requirements by further research.
This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.
Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.115-120
/
1997
System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.