• Title/Summary/Keyword: State discrimination algorithm

Search Result 22, Processing Time 0.028 seconds

An Adaptive Classification Algorithm of Premature Ventricular Beat With Optimization of Wavelet Parameterization (웨이블릿 변수화의 최적화를 통한 적응형 조기심실수축 검출 알고리즘)

  • Kim, Jin-Kwon;Kang, Dae-Hoon;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.294-305
    • /
    • 2009
  • The bio signals essentially have different characteristics in each person. And the main purpose of automatic diagnosis algorithm based on bio signals focuses on discriminating differences of abnormal state from personal differences. In this paper, we propose automatic ECG diagnosis algorithm which discriminates normal heart beats from premature ventricular contraction using optimization of wavelet parameterization to solve that problem. The proposed algorithm optimizes wavelet parameter to let energy of signal be concentrated on specific scale band. We can reduce the personal differences and consequently highlight the differences coming from arrhythmia via this process. The proposed algorithm using ELM as a classifier show high discrimination performance between normal beat and PVC. From the experimental results on MIT-BIH arrhythmia database the performances of the proposed algorithm are 98.1% in accuracy, 93.0% in sensitivity, 96.4% in positive predictivity, and 0.8% in false positive rate. This results are similar or higher then results of existing researches in spite of small human intervention.

A Robust Video Fingerprinting Algorithm Based on Centroid of Spatio-temporal Gradient Orientations

  • Sun, Ziqiang;Zhu, Yuesheng;Liu, Xiyao;Zhang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2754-2768
    • /
    • 2013
  • Video fingerprints generated from global features are usually vulnerable against general geometric transformations. In this paper, a novel video fingerprinting algorithm is proposed, in which a new spatio-temporal gradient is designed to represent the spatial and temporal information for each frame, and a new partition scheme, based on concentric circle and rings, is developed to resist the attacks efficiently. The centroids of spatio-temporal gradient orientations (CSTGO) within the circle and rings are then calculated to generate a robust fingerprint. Our experiments with different attacks have demonstrated that the proposed approach outperforms the state-of-the-art methods in terms of robustness and discrimination.

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

Wearable Device based Discrimination Algorithm for Dangerous Situation (웨어러블 디바이스 기반 위험상황 식별 알고리즘)

  • Yu, Dong-Gyun;Cho, Kwang-Hee;Hwang, Jong-Sun;Kim, Han-Kil;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.605-606
    • /
    • 2016
  • Recently utilizing various wearable device has been going research to provide new services. Conventional wearable devices provide a service to a user by measuring the biological information. However, by measuring the biometric information such a situation the value of the algorithm, the user state and insufficient technology. In this paper, by utilizing an acceleration sensor and the rate sensor set a threshold for measuring the biological information, and heart rate and movement in order to solve this problem. And it proposes an algorithm to cope with the user's status and identifying emergency situations.

  • PDF

Classification System of EEG Signals for Mental Action (정신활동에 의한 EEG신호의 분류시스템)

  • 김민수;김기열;정대영;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2875-2878
    • /
    • 2003
  • In this paper, we propose an EEG-based mental state prediction method during a mental tasks. In the experimental task, a subject goes through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining selection time. EEG signals from four subjects were recorded while they performed three mental tasks. Feature vectors defined by these representations were classified with a standard, feed-forward neural network trained via the error back-propagation algorithm. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or cognitive decision discrimination methods.

  • PDF

Discrimination of a Pleasant and an Unpleasant State by Autoregressive Models from EEG Signals (EEG신호의 시계열분석에 의한 쾌, 불쾌 감성분류에 관한 연구)

  • Im, Seong-Sik;Kim, Jin-Ho;Kim, Chi-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.67-77
    • /
    • 1998
  • The objective of this study is to extract information from electroencephalogram(EEG) signals with which we can discriminate mental states. Seven university students were participated in this study. Ten stimuli based on IAPS (International Affective Picture Systems) Were presented at random according to the experimental schedule. 8-channel ($O_1$, $O_2$, $F_3$, $F_4$, $F_7$, $F_8$, $FP_1$, and $FP_2$)EEG signals were recorded at a sampling rate of 204.8 Hz for visual stimuli and analyzed. After random ten sequential stimuli presentation, the subject subjectively assessed the stimulus by scaling from -5 to 5. If the stimulus was the best and the worst, it was scored 5 and -5, respectively. Only maximum and minimum scored-EEG signals within each subject were selected on the basis of subjectively assessment for analysis. EEG signals were transformed into feature objects based on scalar autoregressive model coefficients. They were classified with Discriminant Analysis for each channel. The features produced results with the best classification accuracy of 85.7 % in $O_1$ and $O_2$ for visual stimuli. This study could be extended to establish an algorithm which quantify and classify emotions evoked by visual stimulus using autoregressive models.

  • PDF

A Comparative Analysis of Fuzzy Logic-Based Relaying and Wavelet-Based Relaying for Large Transformer Protection (대용량 변압기 보호용 퍼지논리 계전기법과 웨이브렛 계전기법의 비교 분석)

  • Park, Chul-Won;Park, Jae-Sae;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.179-188
    • /
    • 2003
  • Percentage differential characteristic scheme has been recognized as the principal basis for large transformer protection. Nowadays, relaying signals can contain second harmonic component to a large extent even in a normal state, and second harmonic ratio indicates a tendency of relative reduction because of the advancement of transformer's core material. And then, conventional second harmonic restraint differential relaying exposes some doubt in reliability. It is, therefore, necessary to develop a new algorithm for the effective and accurate discrimination. This paper deals with advanced fuzzy logic based relaying by using flux differential, and a new fault detection criterion logic scheme by using wavelet transform. To comparative analysis of proposed techniques, the paper constructs power system model including power transformer, utilizing the EMTP, and collects data through simulation of various internal faults and magnetizing inrush. The proposed fuzzy relaying and a new fault detection scheme were tested. The former, fuzzy relaying, was proven to be faster and more reliable than the latter.

Hyperspectral Image Classification using EfficientNet-B4 with Search and Rescue Operation Algorithm

  • S.Srinivasan;K.Rajakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.213-219
    • /
    • 2023
  • In recent years, popularity of deep learning (DL) is increased due to its ability to extract features from Hyperspectral images. A lack of discrimination power in the features produced by traditional machine learning algorithms has resulted in poor classification results. It's also a study topic to find out how to get excellent classification results with limited samples without getting overfitting issues in hyperspectral images (HSIs). These issues can be addressed by utilising a new learning network structure developed in this study.EfficientNet-B4-Based Convolutional network (EN-B4), which is why it is critical to maintain a constant ratio between the dimensions of network resolution, width, and depth in order to achieve a balance. The weight of the proposed model is optimized by Search and Rescue Operations (SRO), which is inspired by the explorations carried out by humans during search and rescue processes. Tests were conducted on two datasets to verify the efficacy of EN-B4, with Indian Pines (IP) and the University of Pavia (UP) dataset. Experiments show that EN-B4 outperforms other state-of-the-art approaches in terms of classification accuracy.

Smart IoT Home Data Analysis and Device Control Algorithm Using Deep Learning (딥 러닝 기반 스마트 IoT 홈 데이터 분석 및 기기 제어 알고리즘)

  • Lee, Sang-Hyeong;Lee, Hae-Yeoun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Services that enhance user convenience by using various IoT devices are increasing with the development of Internet of Things(IoT) technology. Also, since the price of IoT sensors has become cheaper, companies providing services by collecting and utilizing data from various sensors are increasing. The smart IoT home system is a representative use case that improves the user convenience by using IoT devices. To improve user convenience of Smart IoT home system, this paper proposes a method for the control of related devices based on data analysis. Internal environment measurement data collected from IoT sensors, device control data collected from device control actuators, and user judgment data are learned to predict the current home state and control devices. Especially, differently from previous approaches, it uses deep neural network to analyze the data to determine the inner state of the home and provide information for maintaining the optimal inner environment. In the experiment, we compared the results of the long-term measured data with the inferred data and analyzed the discrimination performance of the proposed method.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.