• Title/Summary/Keyword: State aircraft

Search Result 303, Processing Time 0.028 seconds

Impact force and acoustic analysis on composite plates with in-plane loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Park, Ill-Kyung;Ahn, Seok-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.244-249
    • /
    • 2011
  • The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edges, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

  • PDF

The analysis of flight data of aircraft with carry diversion into execution in -flight (비행 중 회항 시도 항공기의 비행자료 분석)

  • Lee, K.C.;Lee, J.H.;Song, B.H.;Shin, D.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.1
    • /
    • pp.67-80
    • /
    • 2003
  • This study is performed to secure the safety of civil aviation by establishing systematic analysis ability of Flight Data Recorder. Through this study, downloading SSFDR(Solid State Flight Data Recorder) to personal computer, editing interface file, flight data numerical analysis and regulations relayed to the aircraft with carry diversion into execution are performed. In the analysis, the flight data of B747-400 model aircraft between Jeju(RKPC) and Gimpo(RKSS) was selected.

  • PDF

Transient Simulation Studies of Squirrel-Cage Induction Motor Directly Supplied with Aircraft Variable Frequency Power

  • Du, Xiaofei;Wang, Deqiang;Zhou, Yuanjun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aircraft variable frequency power and a new application of induction motor under the aero-power are introduced. The transient models and simulation of induction motor are reviewed. A new transient model and simulation method is presented that includes deep-bar effect and magnetic saturation. Dynamic magnetizing inductance, rotor resistance and leakage reactance are considered as varying parameters in state-space model. Base on known rotor structure and speed, these parameters can be calculated.

Crack growth life model for fatigue susceptible structural components in aging aircraft

  • Chou, Karen C.;Cox, Glenn C.;Lockwood, Allison M.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.29-50
    • /
    • 2004
  • A total life model was developed to assess the service life of aging aircraft. The primary focus of this paper is the development of crack growth life projection using the response surface method. Crack growth life projection is a necessary component of the total life model. The study showed that the number of load cycles N needed for a crack to propagate to a specified size can be linearly related to the geometric parameter, material, and stress level of the component considered when all the variables are transformed to logarithmic values. By the Central Limit theorem, the ln N was approximated by Gaussian distribution. This Gaussian model compared well with the histograms of the number of load cycles generated from simulated crack growth curves. The outcome of this study will aid engineers in designing their crack growth experiments to develop the stochastic crack growth models for service life assessments.

Determination of the Mean Size of Cannibalization Aircraft (부속유용항공기의 규모결정)

  • Lee Gyu-Bok;Ha Seok-Tae
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.1
    • /
    • pp.113-129
    • /
    • 1990
  • This paper presents the simulation model to decide the mean size of cannibalization aircraft (MSCA) under steady state when an airbase makes use of cannibalization to support the spare parts of an airfleet. In this model, the essential factors such as mission requirements, mission time, failure time, repair time, repair capability, inventory policy, cannivalization rule are considered. The model is constructed with above factors and actual airbase operating rules for a basis. Because of the tangled interdependencies among the each factors, it is inevitable to construct the model by the simulation technique. The mission and support system of the airbase is considered as a closed queueing network with a finite number of unit The troubled aircrafts are repaired in accordance with the priorities that are determined by their repair times. The illustrative example of the model, using the actual data of xx-airbase, is presented. The model would be a useful tool not only to determine the MSCA and the size of scheduled maintenance aircraft but to evaluate the NORS (not operationally ready supply) rate and the availability of an airfleet.

  • PDF

A Study on the Limits in the Use of Force against a Hijacked Civil Aircraft (피랍 민간항공기에 대한 무력행사의 한계에 관한 연구)

  • Kim, Man-Ho
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.19 no.1
    • /
    • pp.141-163
    • /
    • 2004
  • The limits in the use of force against a civil aircraft which intrudes into sovereign airspace have not been defined in the aspect of international law. Therefore, this paper intends to analyze international laws and practices about sovereign airspace intrusions by the civil aircraft, and to examine the legality in the use of force against the civil aircraft hijacked by means of political terrorism, in particular. In this paper, the sphere of study is restricted within the problems of interception against the civil aircraft which intrudes into sovereign airspace in times of peace, excluding the problems against a state aircraft, and the responsibilities for the civil or criminal affairs due to interceptions. Herein this paper analyzes the existing international laws and the cases of each nation's use of force against the civil aircraft which intrudes into sovereign airspace, and organizes the conditions in the use of force which have been accepted in international laws and practices, and then applies them to the special case of civil aircraft hijacked by political terrorism. Consequently, this paper suggests that the basic principles of necessity, ultimateness, and proportionality be taken into consideration in the use of force against civil aircraft which intrudes into sovereign airspace. This study finally suggests that the possibility in the use of force against civil aircraft hijacked by political terrorism might be higher than any type of civil aircraft intrusions into sovereign airspace due to the factor of necessity of national security concerned.

  • PDF

The Simulator Design for the Analysis of Aircraft Longitudinal Dynamic Characteristics (항공기 세로 동특성 해석을 위한 시뮬레이터 설계)

  • Yoon, Sun-Ju
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • State-space method for the analysis of the dynamic characteristics of a body motion is set up as mathematical tool for the solution of differential equation by computer. Representation of a system is described as a simple form of matrix calculation and unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system etc. For the analysis of state-space method a complicated vector calculation is required, but this analysis can be simplified with the specific functions of a software package. Recently as the Graphical User Interface softwares are well-developed, then it is very simplified to execute the simulation of the dynamic characteristics for the state-space model with the interactive graphics treatment. The purpose of this study is to developed the simulator for the educational analysis of the dynamic characteristics of body motion, and for the analysis of the longitudinal dynamic characteristics of an aircraft that is primarily to design the simulator for the analysis of the transient response of an aircraft longitudinal stability.

  • PDF

Verification of Automatic PAR Control System using DEVS Formalism (DEVS 형식론을 이용한 공항 PAR 관제 시스템 자동화 방안 검증)

  • Sung, Chang-ho;Koo, Jung;Kim, Tag-Gon;Kim, Ki-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • This paper proposes automatic precision approach radar (PAR) control system using digital signal to increase the safety of aircraft, and discrete event systems specification (DEVS) methodology is utilized to verify the proposed system. Traditionally, a landing aircraft is controlled by the human voice of a final approach controller. However, the voice information can be missed during transmission, and pilots may also act improperly because of incorrectness of auditory signals. The proposed system enables the stable operation of the aircraft, regardless of the pilot's capability. Communicating DEVS (C-DEVS) is used to analyze and verify the behavior of the proposed system. A composed C-DEVS atomic model has overall composed discrete state sets of models, and the state sequence acquired through full state search is utilized to verify the safeness and the liveness of a system behavior. The C-DEVS model of the proposed system shows the same behavior with the traditional PAR control system.

Conclusion of Conventions on Compensation for Damage Caused by Aircraft in Flight to Third Parties (항공운항 시 제3자 피해 배상 관련 협약 채택 -그 혁신적 내용과 배경 고찰-)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.1
    • /
    • pp.35-58
    • /
    • 2009
  • A treaty that governs the compensation on damage caused by aircraft to the third parties on surface was first adopted in Rome in 1933, but without support from the international aviation community it was replaced by another convention adopted again in Rome in 1952. Despite the increase of the compensation amount and some improvements to the old version, the Rome Convention 1952 with 49 State parties as of today is not considered universally accepted. Neither is the Montreal Protocol 1978 amending the Rome Convention 1952, with only 12 State parties excluding major aviation powers like USA, Japan, UK, and Germany. Consequently, it is mostly the local laws that apply to the compensation case of surface damage caused by the aircraft, contrary to the intention of those countries and people who involved themselves in the drafting of the early conventions on surface damage. The terrorist attacks 9/11 proved that even the strongest power in the world like the USA cannot with ease bear all the damages done to the third parties by the terrorist acts involving aircraft. Accordingly as a matter of urgency, the International Civil Aviation Organization(ICAO) picked up the matter and have it considered among member States for a few years through its Legal Committee before proposing for adoption as a new treaty in the Diplomatic Conference held in Montreal, Canada 20 April to 2 May 2009. Accordingly, two treaties based on the drafts of the Legal Committee were adopted in Montreal by consensus, one on the compensation for general risk damage caused by aircraft, the other one on compensation for damage from acts of unlawful interference involving aircraft. Both Conventions improved the old Convention/Protocol in many aspects. Deleting 'surface' in defining the damage to the third parties in the title and contents of the Conventions is the first improvement because the third party damage is not necessarily limited to surface on the soil and sea of the Earth. Thus Mid-air collision is now the new scope of application. Increasing compensation limit in big gallop is another improvement, so is the inclusion of the mental injury accompanied by bodily injury as the damage to be compensated. In fact, jurisprudence in recent years for cases of passengers in aircraft accident holds aircraft operators to be liable to such mental injuries. However, "Terror Convention" involving unlawful interference of aircraft has some unique provisions of innovation and others. While establishing the International Civil Aviation Compensation Fund to supplement, when necessary, the damages that exceed the limit to be covered by aircraft operators through insurance taking is an innovation, leaving the fate of the Convention to a State Party, implying in fact the USA, is harming its universality. Furthermore, taking into account the fact that the damage incurred by the terrorist acts, where ever it takes place targeting whichever sector or industry, are the domain of the State responsibility, imposing the burden of compensation resulting from terrorist acts in the air industry on the aircraft operators and passengers/shippers is a source of serious concern for the prospect of the Convention. This is more so when the risks of terrorist acts normally aimed at a few countries because of current international political situation are spread out to many innocent countries without quid pro quo.

  • PDF

Experimental Research on Finding Best Slip Ratio for ABS Control of Aircraft Brake System (항공기용 제동장치의 ABS 제어를 위한 최적 슬립율 결정에 관한 시험적 연구)

  • Yi, Miseon;Song, Wonjong;Choi, Jong Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.597-607
    • /
    • 2017
  • The general control method for Anti-lock Brake System(ABS) is that the wheel slip ratio is observed and the braking force is controlled in real time in order to keep the wheel slip ratio under the value of the best slip ratio. When a wheel runs on the state of the best slip ratio, the ground friction of the wheel approaches the highest value. The value of best slip ratio, theoretically, is known as the value between 10 and 20 % and it is dependant on the ground condition such as dry, wet and ice. It is an important parameter for the braking performance and affects the braking stability and efficiency. In this thesis, an experimental method is suggested, which is a reliable way to decide the best slip ratio through dynamo tests simulating aircraft taxiing conditions. The obtained best slip ratio is proved its validity by results of aircraft taxiing tests.