• Title/Summary/Keyword: State Visualization

Search Result 218, Processing Time 0.029 seconds

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part III-With High Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part III - 고와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-26
    • /
    • 2001
  • This paper is the third of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. In high swirl port, the most fuel remains at combustion chamber and upper cylinder region without being affected by injection timing. The macro-distributed state is not changed but the difference of the amount of fuel around the spark plug varies according to injection timing, which determines LML.

  • PDF

Fluid Flow and Heat Transfer in a Super high-Pressure Mercury Lamp using CFD

  • Jang, Dong Sig;Lee, Yeon Won;Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon Hwan
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.5-9
    • /
    • 2012
  • The discharge properties of super high-pressure mercury lamp are due to resistance heating for energy input, and results in temperature increase. The cooling equilibrium state is reached by the heat conduction, convection and radiation. In order to predict the fluid flow and heat transfer in and around the mercury lamp accurately, its visualization is of utmost importance. Such visualization is carried out by CFD program in this study. We focus on Anode shape to calculate four cases, namely AA, AB, AC and AD separately, and compare the temperature distribution and velocity vector in each case to predict cooling capacity and fluid flow properties. It can be concluded that the shape of anode plays an important role that affects the fluid flow and heat transfer in a mercury lamp.

Development of a 3D-Graphics Based Visualization Application for power equipments Maintenance (3차원 그래픽을 이용한 설비 유지보수 시각화 프로그램 개발)

  • Jung, Hong-Suk;Park, Chang-Hyun;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.246-248
    • /
    • 2006
  • This paper presents a visualization application using 3D-graphics for effective maintenance of power equipments. The maintenance algorithm implemented in the application is based on Condition-Based Maintenance (CBM) and Reliability-Centered Maintenance (RCM). The main frame of the developed application was made up based on visual C++ (MFC). In order to develop the interactive 3D application, the WorldToolKit library based on Open GL was used. The developed application can help the power system operators to intuitively recognize the present state and maintenance information of the equipments.

  • PDF

Visualization of Multi-phase Flow with Electrical Impedance Tomography based on Extended Kalman Filter (확장 칼만 필터 기반 전기임피던스 단층촬영법을 이용한 다상유동장 가시화)

  • Lee, Jeong-Seong;Malik, Nauman Muhammad;Subramanian, Santhosh Kumar;Kim, Sin;Kim, Kyung-Youn
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.576-579
    • /
    • 2008
  • Electrical impedance(EIT) for the multi-phase flow visualization is an imaging modality in which the resistivity distribution of the unknown object is estimated based on the known sets of injected currents and measured voltages on the surface of the object. In this paper, an EIT reconstruction algorithm based on the extended Kalman filter(EKF) is proposed. The EIT reconstruction problem is formulated as a dynamic model which is composed of the state equation and the observation equation, and the unknown resistivity distribution is estimated recursively with the aid of the EKF. To verify the reconstruction performance of the proposed algorithm, experiments with simulated multi-phase flow are performed.

  • PDF

A Study on the Steady Intake Flow Characteristics of the Intake 3-Valve Cylinder Head (흡기3밸브 실린더 헤드의 흡입 정상유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Kim, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.880-885
    • /
    • 2000
  • Flow patterns and steady flow characteristics of an intake 3valve cylinder head are not obviously declared. Thus, in the study, the characteristics and limitation of intake flow coefficient which applied to multi intake valve engine are introduced. The flow coefficient and tumble characteristics are investigated by means of the steady flow test and flow visualization method. As the results, it is found that the intake flow rate is dominated by effective valve open area. In addition, this paper shows that the mass flow rate of intake 3valve engine is greater than that of intake 2valve engine and tumble flow of intake 3valve engine is superior to that of intake 2valve engine.

Realtime Monitoring and Visualization for PDP System (PDP 시스템의 실시간 모니터링 및 시각화)

  • 김수자;송은하;박복자;정영식
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.755-765
    • /
    • 2004
  • Recently, the Internet-based distributed/parallel computing using many of idle hosts has been demonstrated its usefulness for processings of a large-scale task and involving several important issues. While executing a large-scale task, the realtime monitoring is required for adaptive strategy of the performance and state change of host. This paper provides the realtime monitoring and visualization on global computing infrastructure called PDP(Parallel Distributed Processing) which is a parallel computing framework implemented with Jana for parallel computing on the Internet.

  • PDF

Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)

  • Kus, Arkadiusz;Krauze, Wojciech;Makowski, Piotr L.;Kujawinska, Malgorzata
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.61-72
    • /
    • 2019
  • In this paper, we demonstrate the current concepts in holographic tomography (HT) realized within limited angular range with illumination scanning. The presented solutions are based on the work performed at Warsaw University of Technology in Poland and put in context with the state of the art in HT. Along with the theoretical framework for HT, the optimum reconstruction process and data visualization are described in detail. The paper is concluded with the description of hardware configuration and the visualization of tomographic reconstruction, which is calculated using a provided processing path.

Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel

  • Zhou, Jiancheng;Ye, Tianzhou;Zhang, Dalin;Song, Gongle;Sun, Rulei;Deng, Jian;Tian, Wenxi;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Experiments of vertically upward steam-water two-phase flow have been carried out in single-side heated narrow rectangular channel with a gap of 3 mm. Flow patterns were identified and classified through visualization directly. Slug flow was only observed at 0.2 MPa but replaced by block-bubble flow at 1.0 MPa. Flow pattern maps at the pressure of 0.2 MPa and 1.0 MPa were plotted and the difference was analyzed. The experimental data has been compared with other flow pattern maps and transition criteria. The results show reasonable agreement with Hosler's, while a wide discrepancy is observed when compared with air-water two-phase experimental data. Current criteria developed based on air-water experiments poorly predict bubble-slug flow transition due to the different formation and growth of bubbles. This work is significant for researches on heat transfer, bubble dynamics and flow instability.

Usability Evaluation Criteria Development and Application for Map-Based Data Visualization (지도 기반 데이터 시각화 플랫폼 사용성 평가 기준 개발 및 적용 연구)

  • Sungha Moon;Hyunsoo Yoon;Seungwon Yang;Sanghee Oh
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.2
    • /
    • pp.225-249
    • /
    • 2024
  • The purpose of this study is to develop an evaluation tool for map-based data visualization platforms and to conduct heuristic usability evaluations on existing platforms representing inter-regional information. We compared and analyzed the usability evaluation criteria of map-based platforms from the previous studies along with Nielsen's (1994) 10 usability evaluation principles. We proposed nine evaluation criteria, including (1) visibility, (2) representation of the real world, (3) consistency and standards, (4) user control and friendliness, (5) flexibility, (6) design, (7) compatibility, (8) error prevention and handling, and (9) help provision and documentation. Additionally, to confirm the effectiveness of the proposed criteria, four experts was invited to evaluate five domestic and international map-based data visualization platforms. As a result, the experts were able to rank the usability of the five platforms using the proposed map-based data visualization usability evaluation criteria, which included quantified scores and subjective opinions. The results of this study are expected to serve as foundational material for the future development and evaluation of map-based visualization platforms.

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.