• Title/Summary/Keyword: State Space Analysis

Search Result 975, Processing Time 0.027 seconds

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.

Relay of Remote Control Signal for Spacecraft in Deep Space via FHLH (FHLH를 매개로 한 심우주 우주선 원격 제어 신호 중계)

  • Koo, Cheol Hea;Kim, Hyungshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.295-301
    • /
    • 2020
  • When a spacecraft in deep space falls into an abnormal state, an emergency communication channel between ground and the spacecraft is essential in order to perform analysis to the cause of the anomaly, and to remedy the spacecraft from the distressed state. Because the recovery actions generally comprises of long and complicated sequences of commands, the transmission of the recovery commands may require a reliable and a delay tolerant networking technology based on bundle routing. While the delay tolerant networking protocol becomes a prominent method interfacing ground and space into a internet-like Solar system network because it can address the issues of the severe communication problems in deep space, the communication system on the spacecraft which based on space packet protocol cannot use the delay tolerant networking technology directly. So a community of the consultative committee for space data systems starts a discussion of the first-hop last-hop mechanism to establish a feasible concept and standardization. This paper presents an enhanced concept of the first-hop last-hop by applying it a virtual cislunar communication environment, and we believe this contributes to make a way applicable to an interoperable relay concept of the first hop last hop between the delay tolerant networking and space packet protocol standard.

Investigating the Relationship Between Accessibility of Green Space and Adult Obesity Rates: A Secondary Data Analysis in the United States

  • Kim, Junhyoung;Lee, Sujung;Ramos, William
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.3
    • /
    • pp.208-217
    • /
    • 2021
  • Objectives: In spite of the importance of green space for reducing obesity-related problems, there has been little exploration of whether access to green space (e.g., parks and recreational facilities) influences the obesity rate of adults in the United States. The purpose of the study was to investigate the relationships among accessibility of green space, obesity rates, and socioeconomic and demographic variables among adults living in the State of Indiana, United States. Methods: We conducted a secondary data analysis to investigate the relationships among accessibility to green space, obesity rates, and socio-demographic variables with employing Geographic Information System in order to measure the accessibility of green space. Results: This study found that accessibility of green space served as a strong predictor of reduced obesity rates among adults (β=-2.478; p<0.10). In addition, adults with higher education levels, as well as better access to green space, were found to have even lower obesity rates (β=-0.188; p<0.05). Other control variables such as unemployment rates, food security, and physical inactivity are additional factors that influence obesity rates among adults. Conclusions: Accessibility of green space may play an important role in facilitating physical activity participation and reducing obesity rates.

User Density Estimation System at Closed Space using High Frequency and Smart device

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.49-55
    • /
    • 2017
  • Recently, for safety of people, there are proposed so many technologies which detect density of people at the specific place or space. The representative technology for crowd density estimation was using image analysis method from CCTV images. However, this method had a weakness which could not be used and which's accuracy was lower at the dark or smog space. Therefore, in this paper, to solve this problem, we proposed a user density estimation system at closed space using high frequency and smart device. The system send inaudible high frequencies to smart devices and it count the smart devices which detect the high frequencies on the space. We tested real-time user density with the proposed system and ten smart devices to evaluate performance. According to the testing results, we confirmed that the proposed system's accuracy was 95% and it was very useful. Thus, because the proposed system could estimate about user density at specific space exactly, it could be useful technology for safety of people and measurement of space use state at indoor space.

Evaluation of the Vibration Reduction Performance of a Cushioning Layer between Metal Blocks (금속 블록에 삽입된 감쇠층의 진동저감 성능 평가)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.71-76
    • /
    • 2022
  • This study describes an evaluation of the vibration-level reduction effect of natural rubber inserted between two aluminum blocks, in which the modal parameters are predicted using two different damping systems. A numerical model with two degrees of freedom was established for both the cases. One was an eigenvalue problem analysis using a state space method and general viscous damping, whereas the other was a method using hysteretic damping. The modal parameters obtained from these two approaches were compared with those obtained from the finite element method using a commercial package. As a result, the natural frequencies observed in the complex frequency response curve were consistently less than the average of four percents. The damping ratios also showed good agreement within a reasonable range. However, the hysteretic damping system showed a relatively larger difference for all modal parameters. This suggests that the analysis procedure makes it easier to predict the vibration transmission characteristics of the shape and configuration of any cushioning layer.

Part tolerancing through multicale defect analysis

  • Petitcuenot, Mathieu;Anselmetti, Bernard
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • When manufactured parts undergo large deformations during the manufacturing process, the global specifications of a part based on the concept of tolerance zone defined in the ISO 1101 standard [1] enable one to control the part's global defects. However, the extent of this tolerance zone is too large when the objective is to minimize local defects, such as hollows and bumps. Therefore, it is necessary to address local defects and global defects separately. This paper refers to the ISO 10579 standard [2] for flexible parts, which enables us to define a stressed state in order to measure the part by straightening it to simulate its position in the mechanism. The originality of this approach is that the straightening operation is performed numerically by calculating the displacement of a cloud of points. The results lead to a quantification of the global defects through various simple models and enable us to extract local defects. The outcome is an acceptable tolerance solution. The procedure is first developed for the simple example of a steel bar with a rectangular cross section, then applied to an industrial case involving a complex 3D surface of a turbine blade. The specification is described through ISO standards both in the free state and in the straightened state.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Low Noise Time-Frequency Analysis Algorithm for Real-Time Spectral Estimation (실시간 뇌파 특성 분석을 위한 저잡음 스펙트럼 추정 알고리즘)

  • Kim, Yeon-Su;Park, Beom-Su;Kim, Seong-Eun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.805-810
    • /
    • 2019
  • We present a time-frequency analysis algorithm based on the multitaper method and the state-space frameworks. In general, time-frequency representations have a trade-off between the time duration and the spectral bandwidth by the uncertainty principle. To optimize the trade-off problems, the short-time Fourier transform and wavelet based algorithms have been developed. Alternatively, the authors proposed the state-space frameworks based on the multitaper method in the previous work. In this paper, we develop a real-time algorithm to estimate variances and spectrum using the state-space framework. We test our algorithm in spectral analysis of simulated data.

Design of Active Disturbance Rejection Control for Inductive Power Transfer Systems

  • Wang, Yanan;Dong, Lei;Liao, Xiaozhong;Ju, Xinglong;Xiao, Furong
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1434-1447
    • /
    • 2018
  • The control design of inductive power transfer (IPT) systems has attracted a lot of attention in the field of wireless power transmission. Due to the high-order resonant networks and multiple loads in IPT systems, a simplified model of an IPT system is preferred for analysis and control design, and a controller with strong robustness is required. Hence, an active disturbance rejection control (ADRC) for IPT systems is proposed in this paper. To realize the employment of ADRC, firstly a small-signal model of an LC series-compensative IPT system is derived based on generalized state-space averaging (GSSA), then the ADRC is implemented in the designed IPT system. The ADRC not only provides superior robustness to unknown internal and external disturbances, but also requires few knowledge of the IPT system. Due to the convenient realization of ADRC, the designed IPT system retains its simple structure without any additional circuits. Finally, a frequency domain analysis and experimental results have validated the effectiveness of the employed ADRC, especially its robustness in the presence of frequency drifts and other common disturbances.

Design of Automatic Control System for Ship Stabilization (선박 안정화를 위한 자동제어설계에 대하여)

  • 박정후
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 1975
  • Mordern Ocean-going ships utilize stabilization techniques in order to minimize the effects of oscillations due to the unwanted disturbances. In this paper, as an elementary design of automatic control system with linear-state vari;tble feedback and series compensator for ship stabilization, analysis and design is limited to the linear time-invariant single input and output system. In order for the Controlled system to meet the requirements of stability, accuracy and transient response, a model of the automatic control system is proposed. For the analysis and design of this model, the state-space method, that is, the mordern way, or an alternative to the transfer function method of describing a linear system that utilize the state variables and state equations, is applied.

  • PDF