• Title/Summary/Keyword: State Chart

Search Result 181, Processing Time 0.025 seconds

The ARL of a Selectively Moving Average Control Chart (선택적 이동평균(S-MA) 관리도의 ARL)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • This paper investigates the average run length (ARL) of a selectively moving average (S-MA) control chart. The S-U chart is designed to detect shifts in the process mean. The basic idea of the S-MA chart is to accumulate previous samples selectively in order to increase the sensitivity. The ARL of the S-MA chart was shown to be monotone decreasing with respect to the decision length in a previous research [3]. This paper derives the steady-state ARL in a closed-form and shows that the monotone property is resulted from head-start assumption. The steady-state ARL is shown to be a sum of head-start ARL and an additional term. The statistical design procedure for the S-MA chart is revised according to this result. Sensitivity study shorts that the steady-state ARL performance is still better than the CUSUM chart or the Exponentially Weighted Moving Average (EWMA) chart.

A VSR $\bar{X}$ Chart with Multi-state VSS and 2-state VSI Scheme

  • Lee, Jae-Heon;Park, Chang-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.252-264
    • /
    • 2004
  • Variable sampling Interval (VSI) control charts vary the sampling interval according to value of the control statistic while the sample size is fixed. It is known that control charts with 2-state VSI scheme, which uses only two sampling intervals, give good statistical properties. Variable sample size (VSS) control charts vary the sample size according to value of the control statistic while the sampling interval is fixed. In the VSS scheme no optimal results are known for the number of sample sizes. It is also known that the variable sampling rate (VSR) $\bar{X}$ control chart with 2-state VSS and 2-state VSI scheme leads to large improvements In performance over the fixed sampling rate (FSR) $\bar{X}$ chart, but the optimal number of states for sample size Is not known. In this paper, the VSR Χ charts with multi-state VSS and 2-state VSI scheme are designed and compared to 2-state VSS and 2-state VSI scheme. The multi-state VSS scheme is considered to, achieve an additional improvement by switching from the 2-state VSS scheme. On the other hand, the multi-state VSI scheme is not considered because the 2-state scheme is known to be optimal. The 3-state VSS scheme improves substantially the sensitivity of the $\bar{X}$ chart especially for small and moderate mean shifts.

A Synthetic Exponentially Weighted Moving-average Chart for High-yield Processes

  • Kusukawa, Etsuko;Kotani, Takayuki;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • As charts to monitor the process fraction defectives, P, in the high-yield processes, Mishima et al. (2002) discussed a synthetic chart, the Synthetic CS chart, which integrates the CS (Confirmation Sample)$_{CCC(\text{Cumulative Count of Conforming})-r}$ chart and the CCC-r chart. The Synthetic CS chart is designed to monitor quality characteristics in real-time. Recently, Kotani et al. (2005) presented the EWMA (Exponentially Weighted Moving-Average)$_{CCC-r}$ chart, which considers combining the quality characteristics monitored in the past with one monitored in real-time. In this paper, we present an alternative chart that is more superior to the $EWMA_{CCC-r}$ chart. It is an integration of the $EWMA_{CCC-r}$ chart and the CCC-r chart. In using the proposed chart, the quality characteristic is initially judged as either the in-control state or the out-of-control state, using the lower and upper control limits of the $EWMA_{CCC-r}$ chart. If the process is not judged as the in-control state by the $EWMA_{CCC-r}$ chart, the process is successively judged, using the $EWMA_{CCC-r}$ chart. We compare the ANOS (Average Number of Observations to Signal) of the proposed chart with those of the $EWMA_{CCC-r}$ chart and the Synthetic CS chart. From the numerical experiments, with the small size of inspection items, the proposed chart is the most sensitive to detect especially the small shifts in P among other charts.

Study on Effect of Learning Treatment Chart (의안(醫案) 학습효과에 대한 연구)

  • Kim, Yong-Chan;Shin, Hyeun-Kyoo;Kim, Byung-Soo;Kang, Jung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.580-585
    • /
    • 2005
  • Treatment chart(醫案) is a document that doctors have described about their own practice. Western doctor's chart has a prescribed form, but otherwise chart of oriental medicine is a free form. As It has no prescribed form, doctors of oriental medicine have recorded important facts that they think especially. For example, details are patient's name, age, sex and address, the name of disease, state of pulse and tongue, state of secretions(stools, urine, perspiration, etc.), color of face, state of sleep and thirst, diagnosis, prescription, improvement of herb, teaching, and so forth. If we study on chart of oriental medicine, we draw a lesson about practices of a famous doctors. Through that we can increase ability of diagnosis and adaptation to circumstance, make ourselves familiar with use of past prescriptions and way of changing prescription, and learn narrative story of past doctors' personal experience, their though and teaching. As chart of oriental medicine had many methods to take a measure to meet the false situation, we can learn that. Through chart of oriental medicine, we can improve our practice of oriental medicine.

A Control Chart for Gamma Distribution using Multiple Dependent State Sampling

  • Aslam, Muhammad;Arif, Osama-H.;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.109-117
    • /
    • 2017
  • In this article, a control chart based on multiple dependent (or deferred) state sampling for the gamma distributed quality characteristic is proposed using the gamma to normal transformation. The proposed control chart has two pairs of control limits, which can be determined by considering the in-control average run length (ARL). The shift in the scale parameter of a gamma distribution is considered and the out-of-control ARL is evaluated. The performance of the proposed chart has been shown for different levels of the parameters of the proposed control chart. It is also shown that the proposed chart is better than the Shewhart chart in terms of ARLs. A case study with a real data has been included for the practical usage of the proposed scheme.

Design of Robust Expected Loss Control Chart (로버스트 기대손실 관리도의 설계)

  • Lee, Hyeung-Jun;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.10-17
    • /
    • 2016
  • Control Chart is a graph which dots the characteristic values of a process. It is the tool of statistical technique to keep a process in controlled condition. It is also used for investigating the state of a process. Therefore many companies have used Control Chart as the tool of statistical process control (SPC). Products from a production process represent accidental dispersion values around a certain reference value. Fluctuations cause of quality dispersion is classified as a chance cause and a assignable cause. Chance cause refers unmanageable practical cause such as operator proficiency differences, differences in work environment, etc. Assignable cause refers manageable cause which is possible to take actions to remove such as operator inattention, error of production equipment, etc. Traditionally ${\bar{x}}-R$ control chart or ${\bar{x}}-s$ control chart is used to find and remove the error cause. Traditional control chart is to determine whether the measured data are in control or not, and lets us to take action. On the other hand, RNELCC (Reflected Normal Expected Loss Control Chart) is a control chart which, even in controlled state, indicates the information of economic loss if a product is in inconsistent state with process target value. However, contaminated process can cause control line sensitive and cause problems with the detection capabilities of chart. Many studies on robust estimation using trimmed parameters have been conducted. We suggest robust RNELCC which used the idea of trimmed parameters with RNEL control chart. And we demonstrate effectiveness of new control chart by comparing with ARL value among traditional control chart, RNELCC and robust RNELCC.

Statistical Efficiency of VSSI $\bar{X}$ Control Charts for the Process with Two Assignable Causes (두 개의 이상원인이 존재하는 공정에 대한 VSSI $\bar{X}$ 관리도의 통계적 효율성)

  • Lee Ho-Jung;Lim Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.156-168
    • /
    • 2004
  • This research investigates the statistical efficiency of variable sampling size & sampling interval(VSSI) $\bar{X}$ charts under two assignable causes. Algorithms for calculating the average run length(ARL) and average time to signal(ATS) of the VSSI $\bar{X}$ chart are proposed by employing Markov chain method. States of the process are defined according to the process characteristics after the occurrence of an assignable cause. Transition probabilities are carefully derived from the state definition. Statistical properties of the proposed chart are also investigated. A simple procedure for designing the proposed chart is presented based on the properties. Extensive sensitivity analyses show that the VSSI $\bar{X}$ chart is superior to the VSS or VSI $\bar{X}$ chart as well as to the Shewhart $\bar{X}$ chart in statistical sense, even tinder two assignable causes.

An Adaptive Moving Average (A-MA) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 적응형 이동평균 (A-MA) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.457-468
    • /
    • 2007
  • This paper proposes an adaptive moving average (A-MA) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI A-MA chart is to adjust sampling intervals as well as to accumulate previous samples selectively in order to increase the sensitivity. The VSI A-MA chart employs a threshold limit to determine whether or not to increase sampling rate as well as to accumulate previous samples. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI A-MA chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The control length L is introduced to prevent small mean shifts from being undetected for a long period. A Markov chain model is employed to investigate the VSI A-MA sampling process. Formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI A-MA chart is proposed. Comparative studies show that the proposed VSI A-MA chart is uniformly superior to the adaptive Cumulative sum (CUSUM) chart and to the Exponentially Weighted Moving Average (EWMA) chart, and is comparable to the variable sampling size (VSS) VSI EWMA chart with respect to the ATS performance.

A Selectively Cumulative Sum(S-CUSUM) Control Chart (선택적 누적합(S-CUSUM) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.126-134
    • /
    • 2005
  • This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.

A Selectively Cumulative Sum (S-CUSUM) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 선택적 누적합 (S-CUSUM) 관리도)

  • Im, Tae-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.560-570
    • /
    • 2006
  • This paper proposes a selectively cumulative sum (S-CUSUM) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI S-CUSUM chart is to adjust sampling intervals and to accumulate previous samples selectively in order to increase the sensitivity. The VSI S-CUSUM chart employs a threshold limit to determine whether to increase sampling rate as well as to accumulate previous samples or not. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain model is employed to describe the VSI S-CUSUM sampling process. Some useful formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI S-CUSUM chart is proposed. Comparative studies show that the proposed VSI S-CUSUM chart is uniformly superior to the VSI CUSUM chart or to the Exponentially Weighted Moving Average (EWMA) chart with respect to the ATS performance.

  • PDF