• Title/Summary/Keyword: State Approximation

Search Result 399, Processing Time 0.029 seconds

A DESIGN OF QUASI TIME-OPTIMAL FUZZY CONTROL SYSTEMS

  • Nikolai V. Rostov;Seog Chae;Oh, Young-Seok;Keum, Kyo-Un
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.473-480
    • /
    • 2002
  • The problems of quasi time-optimal digital control are discussed. A new design methodology of quasi time-optimal fuzzy controllers based on approximation of prototype discrete controller is suggested. Four kinds of practicable structures for fuzzy controllers are considered. Examples of computer design of quasi time-optimal fuzzy control systems are given.

A comparison study of approximate and Monte Carlo radiative transfer methods for late type galaxy models

  • Lee, Dukhang;Baes, Maarten;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.49.3-50
    • /
    • 2016
  • Two major radiative transfer (RT) techniques have been developted to model late-type galaxies: approximate RT and Monte Carlo (MC) RT. In the approximate RT, first proposed by Kylafis & Bahcall, only two terms of unscattered (direct) and single-scattered intensities are computed and higher-order multiple scattering components are approximated, saving computing time and cost compared to MC RT. However, the approximate RT can yield errors in regions where multiple scattering effect is significant. In order to examine how significant the errors of the approximate RT are, we compare results of the approximate RT with those of SKIRT, a state-of-the-art MC RT code, which is basically free from the approximation errors by fully incorporating all the multiple scattered intensities. In this study, we present quantitative errors in the approximate RT for late type galaxy models with various optical depths and inclination angles. We report that the approximate RT is not reliable if the central face-on optical depth is intermediate or high (${\tau}_V$ > 3).

  • PDF

Shape Optimization of Electromagnetic Devices using High Order Derivativ (고차민감도를 이용한 전기기기 형상 최적화)

  • Ahn, Young-Woo;Kwak, In-Gu;Hahn, Song-Yop;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.241-243
    • /
    • 1998
  • This paper describes a new method for the faster shape optimization of the electromagnetic devices. In a conventional iterative method of shape design optimization using design sensitivity based on a finite element method, meshes for a new shape of the model are generated and a discretized system equation is solved using the meshes in each iteration. They cause much design time. To save this time, a polynomial approximation of the finite element solution with respect to the geometric design parameters using Taylor expansion is constructed. This approximate state variable expressed explicitly in terms of design parameters is employed in a gradient-based optimization method. The proposed method is applied to the shape design of quadrupole magnet.

  • PDF

Direct Adaptive Fuzzy Controller for Nonaffine Nonlinear System (비어파인 비선형 시스템에 대한 직접 적응 퍼지 제어기)

  • 박장현;김성환;박영환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.315-322
    • /
    • 2004
  • A direct adaptive state-feedback controller for highly nonlinear systems is proposed. This paper considers uncertain or ill-defined nonaffine nonlinear systems and employs a static fuzzy logic system (FLS). The employed FLS estimates. and adaptively cancels an unknown plant nonlinearity using its proved universal approximation property. A control law and adaptive laws for unknown fuzzy parameters and bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov. The tracking error is guaranteed to be uniformly asymptotically stable rather than uniformly ultimately bounded with the aid of an additional robustifying control term. No a priori knowledge of an upper bound on an lumped uncertainty is required.

Design of a Controller Using Successive Approximation for Weakly Copled Bilinear Systems (연속적 근사화 방법을 이용한 쌍일차 정규섭동 시스템의 최적제어기 설계)

  • Chang, Jae-Won;Lee, Sang-Yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1999-2001
    • /
    • 2001
  • The infinite time optimum to regulate the problem of weakly coupled bilinear systems with a quadratic performance criterion is obtained by a sequence of algebraic Lyapunov equations. The new approach is based on the successive approximations. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.

  • PDF

A distance Relaying Algorithm Based on Numerical Solution of a Differential Equation for Transmission Line Protection (송전선 보호용 적분근사 거리계전 알고리즘)

  • 조경래;정병태;홍준희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.711-720
    • /
    • 1994
  • A distance relaying algorithm for detecting faults at power transmission line is presented in this paper. The algorithm is based on differential equation from relaton between voltage and current, which is composed of lumped resistance and inductance. During the fault transient state,the voltage and current signals are severely distorted due to the exponentially decaying DC offset and high frequency components, In spite of using small data, the presented integral method to evaluate R and L from voltage and current has high performance against these harmonics including DC offset. Therefore, the presented algorithm can be implemented with only a low order anti-aliasing analog filter and dosen't need any digital filter to remove specific components.

  • PDF

Approximations to blocking probability in two-stage queueing model (이단계 대기모형에서 손실확률에 대한 근사)

  • 서정강;이계민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2644-2652
    • /
    • 1997
  • We ivestigate a two-stage queueing system which frequently arises in the study of overflow problems. A primary service facility consists of multiple primary queues where blocked calls are overflowed to a secondary queue. By approximating the input to the secondary queue with a two-state Markov Modulated Poisson Process (MMPP), we derive the blocking probability of the secondary queue. For the approximation, we employ the well-known Heffes' method and the SAM procedure.

  • PDF

3D Finite Element Analysis of Eddy Current Using Edge Elements (변요소법을 이용한 3차원 와전류 문제의 유한요소 해석)

  • Hong, S.P.;Ryu, J.S.;Koh, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.262-264
    • /
    • 2000
  • A numerical method for the analysis of 3D eddy current in conductors due to applied time varying field is suggested using the finite element method. In the approximation of the field quantifies, the edge element is used, because it reduce the required computer memory and the computing time compared with the nodal elements. With edge elements, furthermore, the field governing equations become simple because the electric scalar potential ${\phi}$ can be set to zero. The modified magnetic vector potential($A^*$) is used as a state variable. The analysed results are compared with the experimentally measured ones for the TEAM workshop problem3.

  • PDF

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

Physical Modeling of SiC Power Diodes with Empirical Approximation

  • Hernandez, Leobardo;Claudio, Abraham;Rodriguez, Marco A.;Ponce, Mario;Tapia, Alejandro
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.381-388
    • /
    • 2011
  • This article presents the development of a model for SiC power diodes based on the physics of the semiconductor. The model is able to simulate the behavior of the dynamics of the charges in the N- region based on the stored charge inside the SiC power diode, depending on the working regime of the device (turn-on, on-state, and turn-off). The optimal individual calculation of the ambipolar diffusion length for every phase of commutation allows for solving the ambipolar diffusion equation (ADE) using a very simple approach. By means of this methodology development a set of differential equations that models the main physical phenomena associated with the semiconductor power device are obtained. The model is developed in Pspice with acceptable simulation times and without convergence problems during its implementation.