• Title/Summary/Keyword: Stat1

Search Result 386, Processing Time 0.028 seconds

Multiple Cytotoxic Factors Involved in IL-21 Enhanced Antitumor Function of CIK Cells Signaled through STAT-3 and STAT5b Pathways

  • Rajbhandary, S.;Zhao, Ming-Feng;Zhao, Nan;Lu, Wen-Yi;Zhu, Hai-Bo;Xiao, Xia;Deng, Qi;Li, Yu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5825-5831
    • /
    • 2013
  • Background/Objectives: Maintenance of cellular function in culture is vital for transfer and development following adoptive immunotherapy. Dual properties of IL-21 in activating T cells and reducing activation induced cell death led us to explore the mechanism of action of IL-21 enhanced proliferation and cytotoxic potential of CIK cells. Method: CIK cells cultured from PBMCs of healthy subjects were stimulated with IL-21 and cellular viability and cytotoxicity to K562 cells were measured. To elucidate the mechanism of action of IL-21, mRNA expression of cytotoxic factors was assessed by RT-PCR and protein expression of significantly important cytotoxic factors and cytokine secretion were determined through flow cytometry and ELISA. Western blotting was performed to check the involvement of the JAK/STAT pathway following stimulation. Results: We found that IL-21 did not enhance in vitro proliferation of CIK cells, but did increase the number of cells expressing the CD3+/CD56+ phenotype. Cytotoxic potential was increased with corresponding increase in perforin ($0.9831{\pm}0.1265$ to $0.7592{\pm}0.1457$), granzyme B ($0.4084{\pm}0.1589$ to $0.7319{\pm}0.1639$) and FasL ($0.4015{\pm}0.2842$ to $0.7381{\pm}0.2568$). Interferon gamma and TNF-alpha were noted to increase ($25.8{\pm}6.1ng/L$ to $56.0{\pm}2.3ng/L$; and $5.64{\pm}0.61{\mu}g/L$ to $15.14{\pm}0.93{\mu}g/L$, respectively) while no significant differences were observed in the expression of granzyme A, TNF-alpha and NKG2D, and NKG2D. We further affirmed that IL-21 signals through the STAT-3 and STAT-5b signaling pathway in the CIK cell pool. Conclusion: IL-21 enhances cytotoxic potential of CIK cells through increasing expression of perforin, granzyme B, IFN-gamma and TNF-alpha. The effect is brought about by the activation of STAT-3 and STAT-5b proteins.

Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway

  • Shan, Qianqian;Li, Shengsheng;Cao, Qiyu;Yue, Chenglong;Niu, Mingshan;Chen, Xiangyu;Shi, Lin;Li, Huan;Gao, Shangfeng;Liang, Jun;Yu, Rutong;Liu, Xuejiao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.193-201
    • /
    • 2020
  • Chromosomal region maintenance 1 (CRM1) is associated with an adverse prognosis in glioma. We previously reported that CRM1 inhibition suppressed glioma cell proliferation both in vitro and in vivo. In this study, we investigated the role of CRM1 in the migration and invasion of glioma cells. S109, a novel reversible selective inhibitor of CRM1, was used to treat Human glioma U87 and U251 cells. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. The results showed that S109 significantly inhibited the migration and invasion of U87 and U251 cells. However, mutation of Cys528 in CRM1 abolished the inhibitory activity of S109 in glioma cells. Furthermore, we found that S109 treatment decreased the expression level and activity of MMP2 and reduced the level of phosphorylated STAT3 but not total STAT3. Therefore, the inhibition of migration and invasion induced by S109 may be associated with the downregulation of MMP2 activity and expression, and inactivation of the STAT3 signaling pathway. These results support our previous conclusion that inhibition of CRM1 is an attractive strategy for the treatment of glioma.

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.

High fat diet-induced obesity leads to proinflammatory response associated with higher expression of NOD2 protein

  • Kim, Min-Soo;Choi, Myung-Sook;Han, Sung-Nim
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Obesity has been reported to be associated with low grade inflammatory status. In this study, we investigated the inflammatory response as well as associated signaling molecules in immune cells from diet-induced obese mice. Four-week-old C57BL mice were fed diets containing 5% fat (control) or 20% fat and 1% cholesterol (HFD) for 24 weeks. Splenocytes ($1{\times}10^7$ cells) were stimulated with $10\;{\mu}g/mL$ of lipopolysaccharide (LPS) for 6 or 24 hrs. Production of interleukin (IL)-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as protein expression levels of nucleotide-binding oligomerization domain (NOD)2, signal transducer and activator of transcription (STAT)3, and pSTAT3 were determined. Mice fed HFD gained significantly more body weight compared to mice fed control diet ($28.2{\pm}0.6$ g in HFD and $15.4{\pm}0.8$ g in control). After stimulation with LPS for 6 hrs, production of IL-$1{\beta}$ was significantly higher (P=0.001) and production of tumor necrosis factor (TNF)-${\alpha}$ tended to be higher (P < 0.064) in the HFD group. After 24 hrs of LPS stimulation, splenocytes from the HFD group produced significantly higher levels of IL-6 ($10.02{\pm}0.66$ ng/mL in HFD and $7.33{\pm}0.56$ ng/mL in control, P=0.005) and IL-$1{\beta}$ ($121.34{\pm}12.72$ pg/mL in HFD and $49.74{\pm}6.58$ pg/mL in control, P < 0.001). There were no significant differences in the expression levels of STAT3 and pSTAT3 between the HFD and the control groups. However, the expression level of NOD2 protein as determined by Western blot analysis was 60% higher in the HFD group compared with the control group. NOD2 contributes to the induction of inflammation by activation of nuclear factor ${\kappa}B$. These findings suggest that diet-induced obesity is associated with increased inflammatory response of immune cells, and higher expression of NOD2 may contribute to these changes.

Synergistic Effects of Bee Venom and Natural Killer Cells on B16F10 Melanoma Cell Growth Inhibition through IL-4-mediated Apoptosis

  • Sin, Dae Chul;Kang, Mi Suk;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives : We investigated the synergistic effects of bee venom (BV) and natural killer (NK) cells on B16F10 melanoma cell apoptosis mediated by IL-4. Methods : We performed a cell viability assay to determine whether BV can enhance the inhibitory effect of NK-92MI cells on the growth of B16F10 melanoma cells, and western blot analysis to detect changes in the expression of IL-4, $IL-4R{\alpha}$, and other apoptosis-related proteins. EMSA was performed to observe the activity of STAT6. To confirm that the inhibitory effect of BV and NK cells was mediated by IL-4, the above tests were repeated after IL-4 silencing by siRNA (50 nM). Results : B16F10 melanoma cells co-cultured with NK-92MI cells and simultaneously treated by BV ($5{\mu}g/ml$) showed a higher degree of proliferation inhibition than when treated by BV ($5{\mu}g/ml$) alone or co-cultured with NK-92MI cells alone. Expression of IL-4, $IL-4R{\alpha}$, and that of other pro-apoptotic proteins was also enhanced after co-culture with NK-92MI cells and simultaneous treatment with BV ($5{\mu}g/ml$). Furthermore, the expression of anti-apoptotic bcl-2 decreased, and the activity of STAT6, as well as the expression of STAT6 and p-STAT6 were enhanced. IL-4 silencing siRNA (50 nM) in B16F10 cells, the effects of BV treatment and NK-92MI co-culture were reversed. Conclusion : These results suggest that BV could be an effective alternative therapy for malignant melanoma by enhancing the cytotoxic and apoptotic effect of NK cells through an IL-4-mediated pathway.

Magnolol exerts anti-asthmatic effects by regulating Janus kinase-signal transduction and activation of transcription and Notch signaling pathways and modulating Th1/Th2/Th17 cytokines in ovalbumin-sensitized asthmatic mice

  • Huang, Qi;Han, Lele;Lv, Rong;Ling, Ling
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.251-261
    • /
    • 2019
  • Allergic asthma, is a common chronic inflammatory disease of the airway presenting with airway hyperresponsiveness and airway remodelling. T helper cells-derived cytokines are critically associated with asthma pathogenesis. Janus kinase-signal transduction and activation of transcription (JAK/STAT) signaling is found to be involved in asthma. Magnolol is a plant-derived bioactive compound with several pharmacological effects. The study aimed to assess the effects of magnolol in ovalbumin (OVA)-induced asthmatic model. BALB/c mice were sensitized and challenged with OVA. Magnolol (12.5, 25, or 50 mg/kg body weight) was administered to separate groups of animals. Dexamethasone was used as the positive control. Cellular infiltration into the bronchoalveolar lavage fluid (BALF) were reduced on magnolol treatment. The levels of Th2 and Th17 cytokines were reduced with noticeably raised levels of interferon gamma. Lung function was improved effectively along with restoration of bronchial tissue architecture. OVA-specific immunoglobulin E levels in serum and BALF were decreased by magnolol. Magnolol reduced Th17 cell population and effectively modulated the JAK-STAT and Notch 1 signaling. The results suggest the promising use of magnolol in therapy for allergic asthma.

Isoegomaketone Ameliorates Atopic Dermatitis via MAPK and STAT Pathway-based Pro-Inflammatory Cytokine Regulation

  • ChangHyun Jin;Ye-Ram Kim;JaeYoung Shin;ByoungOk Cho;Ah-Reum Han
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.489-499
    • /
    • 2023
  • Isoegomaketone(IK), isolated from the radiation-induced mutant cultivar of Perilla frutescens var. crispa, is a major phytochemical compound that has attracted attention in pharmacological research. In this study, we demonstrated that IK exerts anti-inflammatory and protective effects on human mast cells and in an atopic dermatitis mouse model. IK inhibited tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), and IL-8 expression in human mast cells (HMC-1) stimulated with phorbol myristate acetate(PMA) and calcium ionophore A23187 (PMACI). IK significantly reduced the PMACI-induced phosphorylation of ERK and JNK, but not p38. IK also inhibited the PMACI-induced phosphorylation of STAT1 and STAT3. Oral administration of IK in atopic dermatitis mouse model ameliorated skin inflammation severity, as measured by skin thickness and pro-inflammatory cytokine levels such as TNF-α, IL-8, IL-4, and IL-13. These results might suggest that IK is a potent therapeutic agent against skin inflammation and atopic dermatitis.

The Functional and Genetic Defects of IFN-${\gamma}$ Receptor in the Patients with Tuberculosis (결핵환자에서 IFN-${\gamma}$ 수용체의 기능적 및 유전적 이상에 관한 연구)

  • Park, Gye-Young;Hwang, You-Jin;Lim, Young-Hee;An, Chang-Hyeok;Park, Jeong-Woong;Jeong, Seong-Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.497-505
    • /
    • 2002
  • Background : INF-${\gamma}$ plays an important role in the host response to a mycobacterial infection. A complete IFN-${\gamma}$ receptor 1 deficiency is a life threatening condition because it renders patients highly susceptible to a mycobacterial infection. Several mutations in the IFN-${\gamma}$ receptor and STAT1 gene have been identified in the rare mycobacterial infections. These mutations have partial function of the IFN-${\gamma}$ receptor and similar pathologic features to clinical tuberculosis. Materials and Methods : The function of the IFN-${\gamma}$ receptor was evaluated in the patients with clinical tuberculosis. In addition, the DNA coding sequence of the IFNgR1 and STAT1 gene was also analyzed in disseminated tuberculosis patients who might have a defective IFN-${\gamma}$ receptor. Results : The cell surface expression levels of HLA-DR and CD64 in the PMBC after being stimulation with IFN-${\gamma}$ (100IU/ml, 1000IU/ml) were increased in both controls and patients. However, the rate of increase in both groups was similar. The production of TNF-${\alpha}$ in the response to stimulation with LPS was higher in the both groups ($850.7{\pm}687.8$ vs. $836.7{\pm}564.3$ pg/ml). Pretreatment with IFN-${\gamma}$ prior to LPS stimulation resulted in further increase in TNF-${\alpha}$ production between both groups ($2203.5{\pm}242.5$ vs. $2227.5{\pm}560.4$ pg/ml). However, the rate of the increase in TNF-${\alpha}$ production in the both groups was similar. The known mutations in the IFNgR1 and STAT1 coding sequences were not found in the genomic DNA of patients with disseminated tuberculosis. Conclusion : The functional and genetic defects of the IFN-${\gamma}$ receptor were not identified in clinical tuberculosis. This suggests the defective IFN-${\gamma}$ receptor that predispoe patients to a BCG or NTM infection can not alone account for the cases of clinical tuberculosis.

Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes

  • de Almeida, Bruna Oliveira;Machado-Neto, Joao Agostinho
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.413-418
    • /
    • 2020
  • ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and highlight future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer.

Inhibitory Effect of Snake Venom on Colon Cancer Cell Growth Through Induction of Death Receptor Dependent Apoptosis (사독(蛇毒)이 세포자멸사와 관계있는 Death Receptor를 통한 인간 대장암 세포 성장억제에 미치는 영향)

  • Oh, Myung-Jin;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • 목적 : 이 연구는 $Vipera$ $lebetina$ $turanica$ 사독(蛇毒)이 인간 대장암 세포주인 HCT116 세포에서 세포주기진행, death receptor 의존적 세포자멸사 경로 관련단백질 발현 및 NK-${\kappa}B$와 STAT3 활성에 미치는 영향을 규명함으로써 대장암 세포 성장에 대한 억제와 그 기전에 대하여 살펴보고자 하였다. 방법 : 사독을 처리한 후 HCT116의 세포주기를 분석하기 위해서 FACS analysis를 시행하였고, apoptosis 평가에는 TUNEL assay를 시행하였으며 death receptor 의존적 세포자멸사 경로 관련단백질 및 NF-${\kappa}B$와 STAT3 활성 변동 관찰에는 RT-PCR 및 western blot analysis를 시행하였다. 결과 : 1. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 농도 의존적으로 HCT116 대장암 세포활성의 억제가 나타났다. 2. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 농도의존적으로 세포자멸사 활성세포의 증가가 나타났고, SVT $1{\mu}g/m{\ell}$에서는 60-70%의 대장암세포 억제 효과가 나타났다. 3. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 약한 G1 arrest와 강한 G2/M arrest가 나타났고, G0/G1 또는 G2/M 관련 cyclin D, E 및 B1의 증가가 나타났다. 4. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 death receptor4, 5의 발현증가와 그에 따른 세포자멸사 촉진 Bax, PARP, caspase-3, -8, -9 발현 증가 및 세포자멸사 억제의 Bcl-2의 발현 감소 등이 나타났다. 6. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 NF-${\kappa}B$와 STAT3의 활성변동은 관찰되지 않았다. 결론 : 이상의 연구에서 사독은 death receptor 의존적인 세포자멸사를 촉진하여 대장암의 화학치료 내성을 극복할 수 있는 하나의 대안이 될 것으로 생각되지만 보다 심화된 연구가 필요할 것으로 사료된다.