DOI QR코드

DOI QR Code

Isoegomaketone Ameliorates Atopic Dermatitis via MAPK and STAT Pathway-based Pro-Inflammatory Cytokine Regulation

  • ChangHyun Jin (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Ye-Ram Kim (Department of Pathology and Immunology, Washington University School of Medicine) ;
  • JaeYoung Shin (Institute of Health Science, Jeonju University) ;
  • ByoungOk Cho (Institute of Health Science, Jeonju University) ;
  • Ah-Reum Han (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • Received : 2023.12.19
  • Accepted : 2023.12.22
  • Published : 2023.12.31

Abstract

Isoegomaketone(IK), isolated from the radiation-induced mutant cultivar of Perilla frutescens var. crispa, is a major phytochemical compound that has attracted attention in pharmacological research. In this study, we demonstrated that IK exerts anti-inflammatory and protective effects on human mast cells and in an atopic dermatitis mouse model. IK inhibited tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), and IL-8 expression in human mast cells (HMC-1) stimulated with phorbol myristate acetate(PMA) and calcium ionophore A23187 (PMACI). IK significantly reduced the PMACI-induced phosphorylation of ERK and JNK, but not p38. IK also inhibited the PMACI-induced phosphorylation of STAT1 and STAT3. Oral administration of IK in atopic dermatitis mouse model ameliorated skin inflammation severity, as measured by skin thickness and pro-inflammatory cytokine levels such as TNF-α, IL-8, IL-4, and IL-13. These results might suggest that IK is a potent therapeutic agent against skin inflammation and atopic dermatitis.

Keywords

Acknowledgement

This research was supported by the research program of Korea Atomic Energy Research Institute (Project No. 523310-23).

References

  1. Dhyani A, Chopra R and Garg M. 2019. A Review on Nutritional Value, Functional Properties and Pharmacological Application of Perilla (Perilla Frutescens L.). Biomed. Pharmacol. J. 12(2):649-660. https://doi.org/10.13005/bpj/1685.
  2. Ahmed HM. 2019. Ethnomedicinal, phytochemical and pharmacological investigation of Perilla frutescens (L.) Britt. Molecules 24(1):102. https://doi.org/10.3390/molecules24010102.
  3. Igarashi M and Miyazaki Y. 2013. A review on bioactivities of perilla: progress in research on the functions of perilla as medicine and food. Evid. Based Complement. Alternat. Med. 2013:925342 https://doi.org/ 10.1155/2013/925342.
  4. Kang SY, Kim SH, Ryu JH and Kim JB. 2020. Brief History, Main Achievements and Prospect of Mutation Breeding in Korean. Korean J. Breed. Sci. 52(S):49-57. https://doi.org/10.9787/KJBS.2020.52.S.49.
  5. Nam BM, Paudel SB, Kim JB, Jin CH, Lee DH, Nam JW and Han AR. 2019. Preparative separation of three monoterpenes from Perilla frutescens var. crispa using centrifugal partition chromatography. Int. J. Anal. Chem. 2019:8751345. https://doi.org/10.1155/2019/8751345.
  6. Jin CH, Lee HY, Park YD, Choi DS, Kim DS, Kang SY, Seo KI and Jeong IY. 2010. Isoegomaketone inhibits lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages through the heme Oxygenase-1 induction and inhibition of the interferon-β-STAT-1 pathway. J. Agric. Food Chem. 58(2):860-867. https://doi.org/10.1021/jf9033333.
  7. Cho BO, Jin CH, Park YD, Ryu HW, Byun MW, Seo KI and Jeong IY. 2011. Isoegomaketone induces apoptosis through caspase-dependent and caspase-independent pathways in human DLD1 cells. Biosci. Biotechnol. Biochem. 75(7):1306-1311. https://doi.org/10.1271/bbb.110088.
  8. Kwon SJ, Lee JH, Moon KD, Jeong IY, Yee ST, Lee MK and Seo KI. 2014. Isoegomaketone induces apoptosis in SK-MEL-2 human melanoma cells through mitochondrial apoptotic pathway via activating the PI3K/Akt pathway. Int. J. Oncol. 45(5):1969-1976. https://doi.org/10.3892/ijo.2014.2598.
  9. Kwon SJ, Lee JH, Moon KD, Jeong IY, Ahn DU, Lee MK and Seo KI. 2014. Induction of apoptosis by isoegomaketone from Perilla frutescens L. in B16 melanoma cells is mediated through ROS generation and mitochondrial-dependent, -independent pathway. Food Chem. Toxicol. 65:97-104. https://doi.org/10.1016/j.fct.2013.12.031.
  10. Jin CH, So YK, Han SN and Kim JB. 2016. Isoegomaketone upregulates heme oxygenase-1 in RAW264.7 cells via ROS/p38/MAPK/Nrf2 pathway. Biomol. Ther. 24(5):510-516. https://doi.org/10.4062/biomolther.2015.194.
  11. So YK, Jo YH, Nam BM, Lee SY, Kim JB, Kang SY, Jeong HG and Jin CH. 2015. Anti-obesity effect of isoegomaketone isolated from Perilla frutescens (L.) Britt. cv. leaves. Kor. J. Pharmacogn. 46(4):1-6.
  12. Kim YR, Nam BM, Han AR, Kim JB and Jin CH. 2021. Isoegomaketone from Perilla frutescens (L.) Britt stimulates MAPK/ERK pathway in human keratinocyte to promote skin wound healing. Evid. Based Complementary Altern. Med. 2021:6642606. https://doi.org/10.1155/2021/6642606.
  13. Jin CH, So YK, Nam BM, Han SN and Kim JB. 2017. Isoegomaketone alleviates the development of collagen antibody-induced arthritis in male BALB/c mice. Molecules 22:1209. https://doi.org/10.3390/molecules22071209.
  14. Kim YR, Han AR, Kim JB, Cao S and Jin CH. 2022. Isoegomaketone from the Perilla frutescens ameliorates dextran sodium sulfate-induced ulcerative colitis in mice. Nat. Prod. Commun. 17(6):1-6. https://doi.org/10.1177/1934578X221105694.
  15. Thomsen SF. 2014. Atopic dermatitis: Natural history, diagnosis, and treatment. ISRN Allergy 2014:354250. https://doi.org/10.1155/2014/354250.
  16. Bonamonte D, Filoni A, Vestita M, Romita P, Foti C and Angelini G. 2019. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis. Biomed. Res. Int. 2019:2450605. https://doi.org/10.1155/2019/2450605.
  17. Bin L and Leung DYM. 2016. Genetic and epigenetic studies of atopic dermatitis. Allergy Astham Clin. Immunol. 12:52. https://doi.org/10.1186/s13223-016-0158-5.
  18. McGirt LY and Beck LA. 2006. Innate immune defects in atopic dermatitis. J. Allergy Clin. Immunol. 118(1):202-208. https://doi.org/10.1016/j.jaci.2006.04.033.
  19. Shah PP, Desai PR and Singh M. 2012. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J. Control Release 158(2):336-345. https://doi.org/10.1016/j.jconrel.2011.11.016.
  20. Del RJ and Friedlander SF. 2005. Corticosteroids: options in the era of steroid-sparing therapy. J. Am. Acad. Dermatol. 53:S50-S58. https://doi.org/10.1016/j.jaad.2005.04.030.
  21. Sohn EH, Jang SA, Lee CH, Jang KH, Kang SC and Park HJ. 2011. Effects of Korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J. Ginseng Res. 35(4):479-486. https://doi.org/10.5142/jgr.2011.35.4.479.
  22. Park KD, Park SC and Park KK. 2016. The pathogenetic effect of natural and bacterial toxins on atopic dermatitis. Toxins 9(1):3. https://doi.org/10.3390/toxins9010003.
  23. Numata T, Harada K and Nakae S. 2022. Roles of mast cells in cutaneous diseases. Front. Immunol. 13:923495. https://doi.org/10.3389/fimmu.2022.923495.
  24. Galli SJ and Tsai M. 2012. IgE and mast cells in allergic disease. Nat. Med. 18(5):693-704. https://doi.org/10.1038/nm.2755.
  25. Damsgaard TE, Olesen AB, Sorensen FB, Thestrup-Pedersen K and Schiotz PO. 1997. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin. Arch. Dermatol. Res. 289(5):256-260. https://doi.org/10.1007/s004030050189.
  26. Yu R, Igawa K, Handa Y, Munetsugu T, Satoh T and Yokozeki H. 2017. Basophils and mast cells are crucial for reactions due to epi-cutaneous sensitization to ovalbumin. Exp. Dermatol. 26(9):778-784. https://doi.org/10.1111/exd.13279.
  27. Luo X, Chen J, Yang H, Hu X, Alphonse MP, Shen Y, Kawakami Y, Zhou X, Tu W, Kawakami T, Wan M, Archer NK, Wang H and Gao P. 2022. Dendritic cell immunoreceptor drives atopic dermatitis by modulating oxidized CaMKII-involved mast cell activation. JCI Insight 7(5):e152559. https://doi.org/10.1172/jci.insight.152559.
  28. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, Silverberg JI, Deleuran M, Kataoka Y, Lacour JP, Kingo K, Worm M, Poulin Y, Wollenber A, Soo Y, Graham NM, Pirozzi G, Akinlade B, Staudinger H, Mastey V, Eckert L, Gadkari A, Stahl N, Yancopoulos GD and Ardeleanu M. 2016. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375(24):2335-2348. https://doi.org/10.1056/NEJMoa1610020.
  29. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G and Bahar M. 2017. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal. 15:23. https://doi.org/10.1186/s12964-017-0177-y.
  30. Zhang W and Liu HT. 2002. MAPK signal pathway in the regulation of cell proliferation in mammalian cell. Cell Res. 12(1):9-18. https://doi.org/10.1038/sj.cr.7290105.
  31. Huang WC, Huang CH, Hu S, Peng HL and Wu SJ. 2019. Topical Spilanthol inhibits MAPK signaling and ameliorates allergic inflammation in DNCB-induced atopic dermatitis in mice. Int. J. Mol. Sci. 20(10):2490. https://doi.org/10.3390/ijms20102490.
  32. Bao L, Zhang H and Chan LS. 2013. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT 2(3):e24137. https://doi.org/10.4161/jkst.24137.
  33. Kasraie S. 2013. Role of macrophages in the pathogenesis of atopic dermatitis. Mediators Inflamm. 2013:942375. https://doi.org/10.1155/2013/942375.
  34. Kawakami T, Ando T, Kimura M, Wilson BS and Kawakami Y. 2009. Mast cells in atopic dermatitis. Curr. Opin. Immunol. 21(6):666-678. https://doi.org/10.1016/j.coi.2009.09.006.
  35. Klonowska J, Glen J, Nowicki RJ and Trzeciak M. 2018. New cytokines in the pathogenesis of atopic dermatitis-New therapeutic target. Int. J. Mol. Sci. 19(10):3086. https://doi.org/10.3390/ijms19103086.
  36. Kim DH, Jung WS, Kim ME, Lee HW, Youn HY, Seon JK, Lee HN and Lee JS. 2014. Genistein inhibits pro-inflammatory cytokines in human mast cell activation through the inhibition of the ERK pathway. Int. J. Mol. Med. 34(6):1669-1674. https://doi.org/10.3892/ijmm.2014.1956.
  37. Jin H, He R, Oyoshi M and Geha RS. 2009. Animal models of atopic dermatitis. J. Invest. Dermatol. 129(1):31-40. https://doi.org/10.1038/jid.2008.106.
  38. Brandt EB and Sivaprasad U. 2011. Th2 cytokines and atopic dermatitis. J. Clin. Cell. Immunol. 2(3):110. https://doi.org/10.4172/2155-9899.1000110.
  39. Yamanaka KI and Mizutani H. 2011. The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr. Probl. Dermatol. 41:80-92. https://doi.org/10.1159/000323299.
  40. Silverberg JI, Barbarot S, Gadkari A, Simpson EL, Weidinger S, Osorio PM, Rossi AB, Brignoli L, Saba G, Guillemin I, Fenton MC, Auziere S and Eckert L. 2021. Atopic dermatitis in the pediatric population: A cross-sectional, international epidermilogic study. Ann. Allergy Asthma Immunol. 126(4):417-428. https://doi.org/10.1016/j.anai.2020.12.020.
  41. Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL, Margolis DJ, Bruin-Weller M.de and Eckert L. 2018. Epidermiology of atopic dermatitis in adults: Results from an international survey. Allergy 73(6):1284-1293. https://doi.org/10.1111/all.13401.
  42. Metz M, Piliponsky AM, Chen CC, Lammel V, Abrink M, Pejler G, Tasai M and Galli SJ. 2006. Mast cells can enhance resistance to snake and honeybee venoms. Science 313(5786):526-530. https://doi.org/10.1126/science.1128877.
  43. McLachlan JB, Hart JP, Pizzo SV, Shelburne CP, Staats HF, Gunn MD and Abraham SN. 2003. Mast cell-derived tumor nercrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol. 4(12):1199-1205. https://doi.org/10.1038/ni1005.
  44. Metzger H. 1992. The receptor with high affinity for IgE. Immunol. Rev. 125:37-48. https://doi.org/10.1111/j.1600-065x.1992.tb00624.x.
  45. Sehra S, Serezani APM, Ocana JA, Travers JB and Kaplan MH. 2016. Mast cells regulate epidermal barrier function and the development of allergic skin inflammation. J. Invest. Dermatol. 136(7):1429-1437. https://doi.org/10.1016/j.jid.2016.03.019.
  46. Leyva-Castillo JM, Sun L, Wu SY, Rockowitz S, Sliz P and Geha RS. 2022. Single-cell transcriptome profile of mouse skin undergoing antigen-driven allergic inflammation recapitulates finding in atopic dermatitis skin lesions. J. Allgery clin. Immunol. 150(2):373-384. https://doi.org/10.1016/j.jaci.2022.03.002.
  47. Hagiyama M, Inoue T, Furuno T, Iino T, Itami S, Naknishi M and Asada H. 2013. Increased expression of cell adhesion molecule 1 by mast cells as a cause of enhanced nerve-mast cell interactioni in a hapten-induced mouse model of atopic dermatitis. Br. J. Dermatol. 168(4):771-778. https://doi.org/10.1111/bjd.12108.
  48. Lee DH, Kim SH, Eun JS and Shin TY. 2006. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production. Toxicol. Appl. Pharmacol. 216(3):479-484. https://doi.org/10.1016/j.taap.2006.06.007.
  49. Rauch I, Muller M and Decker T. 2013. The regulation of inflammation by interferons and their STATs. JAKSTAT 2(1):e23820. https://doi.org/10.4161/jkst.23820.
  50. Loh CY, Arya A, Naema AF, Wong WF, Sethi G and Looi CY. 2019. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: Functions and therapeutic implication. Front. Oncol. 9:48. https://doi.org/10.3389/fonc.2019.00048.
  51. Hopkin JE, Naisbitt DJ, Kitteringham NR, Dearman RJ, Kimber I and Park BK. 2005. Selective haptenation of cellular or extracellular protein by chemical allergens: association with cytokine polarization. Chem. Res. Toxicol. 18(2):375-381. https://doi.org/10.1021/tx049688+.
  52. Chen X, Zhu C, Zhang Y, Yang N, Shi H, Yang W, Yang Y, Liang J, Chen L, Zeng X, Cai R, Wu G and Tang Z. 2020. Antipruritic effect of ethyl acetate extract from Fructus cnidii in mice with 2,4-dinitrofluorobenzene-induced atopic dermatitis. Evid. Based Complement. Alternat. Med. 2020:6981386. https://doi.org/10.1155/2020/6981386.