• Title/Summary/Keyword: Starch Gelatinization

Search Result 334, Processing Time 0.024 seconds

Effect of annealing treatment on gelatinization of upland and lowland waxy brown rice starches (아닐링 처리가 밭벼와 논벼 찹쌀 전분의 호화에 미치는 영향)

  • Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.187-189
    • /
    • 1991
  • Gelatinization temperatures of upland and lowland waxy brown rice starches annealed at $25^{\circ}C$ and $60^{\circ}C$ for 24hr were investigated with differential scanning calorimetry No annealing effect was observed at low temperature. The upland rice starch showed narrower range of gelatinization temperature upon annealing treatment at $60\circ}C$ compared with the lowland rice starch. The enthalpy of gelatinization was not changed in case of the upland rice starch but was increased in case of the lowland one upon annealing.

  • PDF

The Effects of Blending Starches on the Development of Plybond Strength of Two-ply Linerboard (삼성분 전분혼합에 의한 이겹지의 층간결합강도 개선)

  • Lee, Hak-Lae;Ryu, Jeong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.14-20
    • /
    • 2007
  • The effects of blending starches with different gelatinization temperatures on the development of ply-bond strength were systematically investigated using a three component mixture design technique. Oxidized corn starches with different gelatinization temperatures were blended with natural corn starch and sprayed for plybonding. Optimum blend ratio for maximizing plybond strength improvement for the starch blends was 40% of natural starch, 27% of oxidized starch with low gelatinization temperature and 33% of oxidized starch with high gelatinization temperature. Starch granules with the lowest gelatinization temperature gelatinizes at the lowest temperature, while the natural corn starch gelatinizes at later stage of drying. The improvement of plybond strength with starch blends were verified on machine trial as well. Plybond strength improvement obtained from the machine trial was lower than that achievable with handsheets, which was attributed to the lower internal bond strength of the linerboards made from recycled fibers.

Gelatinization Behaviours and Gel Properties of Hydroxypropylated and Cross-linked Corn Starches (하이드록시프로필화 및 가교화 시킨 옥수수 전분의 호화 및 겔 특성)

  • Yook, Cheol;Pek, Un-Hua;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.70-73
    • /
    • 1992
  • Gelatinization behaviour and gel properties of corn starch modified either by hydroxypropylation only or by cross-linking and hydroxypropylation were investigated. Gelatinization temperature of corn starch decreased greatly by hydroxypropylation, but increased slightly by cross-linking with epichlorohydrin. The treatment of both hydroxypropylation and cross-linking lowered the gelatinization temperature, although it was not significantly different from that of hydroxypropylated corn starch. The swelling power of the corn starch was reduced and gel strength was increased by both modifications. The results suggested that the gelatinization behaviour and gel properties of corn starch could be improved by both cross-linking and hydroxypropylation.

  • PDF

The Influence of the Annealing of Corn Starch on the formation and Characteristics of Enzyme-resistant Starch

  • Yoon, Ji-Young;Lee, Young-Eun
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.215-220
    • /
    • 1999
  • The Physical properties of corn starch were investigated by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry during the formation of enzyme-resistant starch(RS). Samples were studied in their native states and after annealing at 50, 55, 60 and 65℃ in excess water(starch : water=1:3) for 48hr. Starch granules became smaller and more rounded after annealing than in their native state. Annealing did not change the X-ray profile of native corn starch. After autoclaving-cooling cycles, native starch lost most of its crystallinity but annealed ones showed some of their crystallinity left as diffuse or poor B-type, which didn't relate to increasing Rs yields. During formation of RS, however, both native and annealed starches changed their X-ray profile from A-type to poor B-type of retrograded amylose. Annealing caused an increase in gelatinization temperature and enthalpy, but a narrowing of gelatinization temperature range. Only starch annealed at 65℃, however, showed a decrease in enthalpy even though its gelatinization temperature increased, which appeared to be due to the partial gelatinization in the amorphous region during annealing. Peak height index(PHI), the ratio of ΔH to Ti-To, increased by annealing. PHI values, therefore, showed the possibility as an indicator to predict RS yield which cannot be differentiated by differential scanning calorimetry and X-ray diffraction data.

  • PDF

Gelatinization Properties of Starch Dough with Moisture Content, Heating Temperature and Heating Time (수분함량, 가열온도 및 가열시간에 따른 전분 반죽의 호화특성)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.428-438
    • /
    • 1995
  • The gelatinization properties of corn and waxy corn starch doughs were examined at various moisture contents, heating temperatures and heating times. The onset temperatures of gelatinization with 1% CMC using Brabender Amylograph were $64^{\circ}C$ for both corn and waxy corn starch. In the gelatinization properties using DSC, onset temperature$(T_o)$, maximum peak temperature$(T_p)$, completion temperature$(T_c)$ and enthalpy of the corn starch were $68.15^{\circ}C,\;74.01^{\circ}C,\;85.65^{\circ}C$ and $3.2\;cal/gram$ respectively. While those of the waxy corn starch were $68.24^{\circ}C,\;75.43^{\circ}C,\;93^{\circ}C$ and $4.2\;cal/gram$ respectively. In enzymatic analysis, when the moisture content increased from 36% to 52% and heating temperature from $60^{\circ}C$ to $100^{\circ}C$, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The regression equations of gelatinization degree (Y) of starch dough in the range of $36{\sim}52%$ moisture content $(X_1)\;60{\sim}100^{\circ}C$ heating temperature $(X_2)\;and\;0{\sim}2.0$ min heating time $(X_3)$ were examined using response surface analysis. The regression equation of corn starch dough was: $Y=28.659+8.638\;X_}+15.675\;X_2+7.770\;X_3-1.620\;{X_1}^2+10.790\;X_1X_2-4.220\;{X_2}^2+0.510\;X_1X_3+1.980\;X_2X_3-6.850\;{X_3}^2\;(R^2=0.9714)$ and that of waxy corn starch dough was: $Y=32.617+12.535\;X_1+20.470\;X_2+8.608\;X_3+4.093\;{X_1}^2+13.550\;X_1X_2-4.467\;{X_2}^2+1.560\;X_1X_3+2.160\;X_2X_3-9.527\;{X_3}^2$\;(R^2=0.9621)$. As the moisture content, heating temperature and heating time increased, the reaction rate constant(k) of gelatinization increased. The greatest reaction rate constant was observed at initial 0.5 min heating time of 1st gelatinization stage. At the heating temperature of $90^{\circ}C$, gelatinization of starch dough was completed almost in the initial 0.5 min heating time. The reaction rate constant of waxy corn starch dough was higher than that of corn starch dough under the same gelatinization conditions. At the 52% moisture content, the regression equation between reaction rate constant(k) and heating temperature(T) for corn starch dough was $log\;k=11.1140-4.1226{\times}10^3(1/T)$ (r=-0.9520) and that of waxy corn starch dough was $log\;k=10.1195-3.7090{\times}10^3(1/T)$ (r=-0.9064).

  • PDF

Reaction Mechanixm of Cyclodextrin formation from Swollen Extrusion Starch by cyclocextrin Glucanotransferase (팽윤 전분을 기질로 한 Cyclodextrin Glucanotransferase의 Cyclodextrin 생성반응 기작)

  • 이용현;조명진;박동찬
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.416-424
    • /
    • 1995
  • Mechanism of the cyclodextrin (CD) production reaction by cyclodextrin glucanotransferase (CGTase) using swollen extrusion starch as substrate was investigated emphasizing the structural features of starch granule. The degree of gelatinization was identified to be the most representative structural characteristic of swollen starch. The most suitable degree of gelatinization of swollen starch for CD production was around 63.52%. The structural transformation of starch granule during enzyme reaction was also followed by measuring the changes of the degree of gelatinization, microcrystallinity, and accessible and inaccessible portion to CGTase action of residual swollen starch. The adsorption phenomenon of CGTase to swollen starch was also examined under various conditions. The inhibition mechanism of CGTase by various CDs was identified to be competitive, most severely by a-CD. The mechanism elucidated will be used for development of a kinetic model describes CD production reaction in heterogeneous enzyme reaction system utilizing swollen extrusion starch.

  • PDF

Physical and Chemical Characteristics of Punux Ginseng Starch (인삼전분의 이화학적 특성)

  • 오훈일;이송재
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.114-121
    • /
    • 1981
  • Starch was isolated from 4-year-old and 6-year-old ginseng roots and its physical and chemical characteristics were studied. The results obtained were summarized as follows. 1. The shape of ginseng starch granules was polygonal and rounded with its granule size ranging from 2.0 to 7.5$\mu$. The swelling power of 4-year-old ginseng starch was much greater than that of 6-year old ginseng starch. Gelatinization pattern showed that 6-year-old ginseng starch gelatinized rapidly at $65^{\circ}C$, whereas 4-year-old starch continued to gelatinize, without having a definite gelatinization temperature as temperature increased 3. Amylogram of ginseng starch showed that gelatinization initiated at 61$^{\circ}C$ and was completed at 88$^{\circ}C$ with its viscosity reaching at 810 B.U. 4. The amylose contents were 32% and 9% for 4-year-old and 6-year-old ginseng starch, respectively. 5. X-ray diffraction analyses indicated that there were some structural differences between 4-year-old and 6-year-old ginseng starch.

  • PDF

Effect of Ohmic Heating on Thermal and Water Holding Property of Starches (옴가열이 전분의 열적 특성과 흡수력에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.112-119
    • /
    • 2014
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. Herein, we have studied thermal property changes of wheat, corn, potato and sweet potato starch by ohmic heating as well as conventional heating. And then we measure the water holding capacity of starches. Annealing of starch is a heat treatment method heated at 3~4% below the gelatinization point. This treatment changes the starch's thermal property. In the DSC analysis of this study, the $T_o$, $T_p$, $T_c$ of all starch levels have increased, and the $T_c$-$T_o$ narrowed. In the ohmic heating, the treatment sample is extensively changed but not with the conventional heating. From the ohmic treatment, increases from gelatinization temperature are potato ($8.3^{\circ}C$) > wheat ($5.3^{\circ}C$) > corn ($4.9^{\circ}C$) > sweet potato ($4.5^{\circ}C$), and gelatinization ranges are potato ($7.9^{\circ}C$), wheat ($7.5^{\circ}C$), corn ($6.1^{\circ}C$) and sweet potato ($6.8^{\circ}C$). In the case of conventional treatment, water holding capacity is not changed with increasing temperature but the ohmic heating is increased. Water holding capacity is related to the degree of gelatinization for starch. This result show that when treated with below gelatinization temperature, the starches are partly gelatined by ohmic treatment. When viewing the results of the above, ohmic treatment is enhanced by heating and generating electric currents to the starch structure.

Gelatinization Properties of Starch during Steeping Condition of Potato (감자의 수침조건에 따른 전분의 호화 특성)

  • 정난희;김경애;전은례
    • Korean journal of food and cookery science
    • /
    • v.16 no.5
    • /
    • pp.431-436
    • /
    • 2000
  • Gelatinization properties of potato starches which were prepared by steeping at 10 ${\pm}$ 1$^{\circ}C$ or 25 ${\pm}$ 1$^{\circ}C$ for 11 days were investigated. The pasting and initial gelatinization temperatures measured by rapid visco-analyzer (RVA) were increased, but the peak and trough viscosities of potato starch were decreased by steeping. The onset temperature, peak temperature, conclusion temperature, and enthalpy of gelatinization were increased by steeping as measured by DSC. The contents of hot-water-soluble carbohydrate and amylose in potato starch were decreased by steeping.

  • PDF

Characteristics of Dry and Moist Type Sweet Potato Starches (분질 및 점질 고구마 전분의 특성)

  • Shin, Mal-Shick;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.412-418
    • /
    • 1988
  • Granular shapes and sizes, physicochemical priperties and gelatinization patterns of sweet potato starches from Wonki(the dry type) and Chunmi(the moist type) were investigated. Starch granules of sweet potatoes were round. Granule sizes of Wonki starch were mainly $11{\mu}m$ and those of Chunmi starch were $12{\mu}m\;and\;17{\mu}m$. Wonki starch had lower water binding capacity and swelling power than Chunmi starch. But Wonki starch had higher amylose content, gelatinization temperature, miture content for gelatinization and temperature for gelatinization than Chunmi starch.

  • PDF