• Title/Summary/Keyword: Star Clusters

Search Result 228, Processing Time 0.023 seconds

Investigating the Non-linearity Effect on the Color-to-Metallicity Conversion of Globular Clusters

  • Kim, Hak-Sub;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2014
  • Metallicity distribution of globular clusters (GCs) provides an important clue for star formation history of their host galaxy. With an assumption that GCs are generally old, GC colors have been used as a proxy of GC metallicities. Bimodal GC color distributions observed in most large galaxies have, for decades, been interpreted as bimodal metallicity distributions, indicating the presence of two populations within a galaxy. However, the conventional view has been challenged by a new theory that non-linear GC color-metallicity relations (CMRs) can cause a bimodal color distribution even from a single-peaked metallicity distribution. Using the photometric and spectroscopic data of NGC 5128 GCs in combination with stellar population simulation models, we examine the effect of non-linearity in GC CMRs on the transformation of GC color distributions into metallicity distributions. Although, in some colors, offsets are present between observations and models in the CMRs, their overall shape agrees well for various colors. After the offsets are corrected, the observed spectroscopic metallicity distribution is well reproduced via modeled CMRs from various color distributions having different morphologies. On the other hand, the linearly converted metallicity distributions from GC colors show a significant discrepancy with the observed spectroscopic metallicity distribution. We discuss the implications of our results.

  • PDF

Spectroscopic observation of the massive high-z (z=1.48) galaxy cluster SPT-CL J2040-4451 using Gemini Multi-Object Spectrographs

  • Kim, Jinhyub;Jee, Myungkook J.;Kim, Seojin F.;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • Mass measurement of high-redshift galaxy clusters with high accuracy is important in constraining cosmological parameters. Extremely massive clusters at high redshift may impose a serious tension with the current ΛCDM paradigm. SPT-CL J2040-4451 at z=1.48 is considered one such case given its redshift and mass estimate inferred from the SZ data. The system has also been confirmed to be indeed massive from a recent weak-lensing (WL) analysis. Comparison of the WL mass with the spectroscopic result may provide invaluable information on the dynamical stage of the system. However, the existing spectroscopic coverage of the cluster is extremely poor; only 6 blue star-forming galaxies have been found within the virial radius, which results in highly inflated and biased velocity dispersion. In this work, we present a spectroscopic analysis of the member candidates using Gemini Multi-Object Spectrographs (GMOS) observation in Gemini South. The observation was designed to find early-type member galaxies within the virial radius and to obtain reliable velocity dispersion. We explain our selection scheme and preliminary results of the spectra. We also compare the dynamical mass estimate inferred from the velocity dispersion with the WL mass.

  • PDF

Color Dispersion as an Indicator of Stellar Population Complexity for Galaxies in Clusters

  • Lee, Joon Hyeop;Pak, Mina;Lee, Hye-Ran;Oh, Sree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.34.1-34.1
    • /
    • 2018
  • We investigate the properties of bright galaxies with various morphological types in Abell 1139 and Abell 2589, using the pixel color-magnitude diagram (pCMD) analysis. The 32 bright member galaxies ($Mr{\leq}-21.3mag$) are deeply imaged in the g and r bands in our CFHT/MegaCam observations, as a part of the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). We examine how the features of their pCMDs depend on galaxy morphology and infrared color. We find that the g - r color dispersion as a function of surface brightness (${\mu}r$) shows better performance in distinguishing galaxy morphology, than the mean g - r color does. The best set of parameters for galaxy classification appears to be a combination of the minimum color dispersion at ${\mu}r{\leq}21.2mag\;arcsec-2$ and the maximum color dispersion at $20.0{\leq}{\mu}r{\leq}21.0mag\;arcsec-2$: the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Moreover, the color dispersion of an elliptical galaxy appears to be correlated with its WISE infrared color ([4.6]-[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  • PDF

The Performance of Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Moon, Bongkon;Park, Sung-Joon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Ko, Kyeongyeon;Kim, Mingyu;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2017
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared spectro-photometric instrument optimized to the first Next Generation of small satellite (NEXTSat-1). The off-axis optics was developed to cover a wide field of view with 2 deg. ${\times}$ 2 deg. as well as a wide wavelength range from 0.95 to $2.5{\mu}m$. Considering the simple alignment scheme, afocal system was adapted in the optical components. The mechanical structures were tested under the space environment. We have obtained the accurate calibration data using our test facilities under the operational condition. After the final integration of flight model into the satellite, the communication with the satellite and the functional test were passed. The NISS will be launched in early 2018. During around 2-year operation, the spectro-photometric survey covering more than 100 square degree will be performed. To achieve the major scientific objectives for the study of the cosmic star formation in local and distant universe, the main observational targets will be nearby galaxies, galaxy clusters, star-forming regions and low background regions. Here, we report the final performance of the flight model of the NISS.

  • PDF

THE PROCESSING OF CLUMPY MOLECULAR GAS AND STAR FORMATION IN THE GALACTIC CENTER

  • LIU, HAUYU BAOBAB;MINH, YOUNG CHOL;MILLS, ELISABETH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • The Galactic center uniquely provides opportunities to resolve how star clusters form in neutral gas overdensities engulfed in a large-scale accretion flow. We have performed sensitive Green Bank 100m Telescope (GBT), Karl G. Jansky Very Large Array (JVLA), and Submillimeter Array (SMA) mapping observations of molecular gas and thermal dust emission surrounding the Galaxy's supermassive black hole (SMBH) Sgr $A^{\ast}$. We resolved several molecular gas streams orbiting the center on ${\gtrsim}10$ pc scales. Some of these gas streams appear connected to the well-known 2-4 pc scale molecular circumnuclear disk (CND). The CND may be the tidally trapped inner part of the large-scale accretion flow, which incorporates inflow via exterior gas filaments/arms, and ultimately feeds gas toward Sgr $A^{\ast}$. Our high resolution GBT+JVLA $NH_3$ images and SMA+JCMT 0.86 mm dust continuum image consistently reveal abundant dense molecular clumps in this region. These gas clumps are characterized by ${\gtrsim}100$ times higher virial masses than the derived molecular gas masses based on 0.86 mm dust continuum emission. In addition, Class I $CH_3OH$ masers and some $H_2O$ masers are observed to be well associated with the dense clumps. We propose that the resolved gas clumps may be pressurized gas reservoirs for feeding the formation of 1-10 solar-mass stars. These sources may be the most promising candidates for ALMA to probe the process of high-mass star-formation in the Galactic center.

X-ray AGNs in Abell 133

  • Shin, Jaejin;Woo, Jong-Hak;Gallo, Elena;Plotkin, Richard M.;Mulchaey, John S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.75.1-75.1
    • /
    • 2015
  • Environments (field, galaxy groups, and galaxy clusters) can affect galaxy evolution due to galaxy interaction which is controlled by different galaxy number densities and velocity dispersions. Since the galaxy interaction or merger triggers both star formation and AGN, AGN fraction can be used to understand the effect of environment. We detected X-ray AGN fraction in a nearby galaxy cluster, Abell 133, using Chandra X-ray image and optical spectra. We found ~600 X-ray point sources in the field of Abell 133 using the 2.8 Msec exposure Chandra images. We determined 3 cluster members based on the redshifts derived from optical spectra obtained from Magellan IMACS observation. The AGN fraction in Abell 133 is similar to that of other environments, i.e., COSMOS and CDFS. We will discuss the results by comparing Abell 133 with other environments.

  • PDF

STELLAR CONTENTS AND GLOBULAR CLUSTER CANDIDATES IN THE SCULPTOR GROUP GALAXY NGC 300

  • KIM SANG CHUL;SUNG HWANKYUNG;LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.9-28
    • /
    • 2002
  • We present UBVI CCD photometry of the stellar contents and globular cluster(GC) candidates in the spiral galaxy NGC 300 in the Sculptor group. Color-magnitude diagrams for 18 OB associations having more than 30 member stars are presented. The slope of the initial mass function for the bright stars in NGC 300 is estimated to be ${\Gamma}= -2.6{\pm} 0.3$. Assuming the distance to NGC 300 of (m - M)o = 26.53 $\pm$ 0.07, the mean absolute magnitude of three brightest blue stars is obtained to be < $M_v^{BSG}$ (3) > = -8.95 mag. We have performed search for GCs in NGC 300 and have found 17 GC candidates in this galaxy. Some characteristics of these GC candidates are discussed.

NO OPEN CLUSTER IN THE RUPRECHT 93 REGION

  • Cheon, So-Ra;Sung, Hwan-Kyung;Bessell, M.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.4
    • /
    • pp.115-121
    • /
    • 2010
  • UBVI CCD photometry is obtained for the Ruprecht 93 (Ru 93)region. We are unable to confirm the existence of an intermediate-age open cluster in Ru 93 from the spatial distribution of blue stars. On the other hand, we find two young star groups in the observed field: the nearer one (Ru 93 group) comprises the field young stars in the Sgr-Car arm at $d{\approx}2.1$ kpc, while the farther one (WR 37 group) is the young stars around WR 37 at $d{\approx}4.8$ kpc. We derive an abnormal extinction law ($R_V$ = 3.5) in the Ruprecht 93 region.

PPMXL PHOTOMETRIC STUDY OF FOUR OPEN CLUSTER CANDIDATES (IVANOV 2, IVANOV 7, IVANOV 9 AND HARVARD 9)

  • Tadross, A.L.;Bendary, R.
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.137-145
    • /
    • 2014
  • The astrophysical parameters of four unstudied open star cluster candidates; Ivanov 2, 7, 9, and Harvard 9; are estimated for the first time using the PPMXL database. The stellar density distributions and color-magnitude diagrams for each cluster are used to determine the geometrical structure (cluster center, limited radius, core and tidal radii, the distances from the Sun, from the Galactic center and from the Galactic plane). Also, the main photometric parameters (age, distance modulus, color excesses, membership, total mass, relaxation time, luminosity and mass functions) are estimated.

CN AND CH BAND STRENGTHS OF BRIGHT GIANTS IN THE GLOBULAR CLUSTER M15

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.137-142
    • /
    • 2000
  • CN and CH band strengths for ten new bright giants in the globular cluster M15 have been measured from archival spectra obtained with the Multiple Mirror Telescope. Using published indices for other bright M15 giants, a CN-CH band strength anticorrelation is found for bright red giants. However, stars that do not follow the CN-CH anticorrelation are also found. They seem to show a positive correlation between the two indices. Among them, all the AGB and HB stars of the sample are included. Stars I-38 and X6, which are located near the RGB fiducial line in the CMD, have low measured CH(G) indices compared with other RGB stars. Stars IV-38, S4, and S1, which are all near the RGB tip, have strong measured CH(G) indices. Therefore, most of their evolutionary states are suspected to be different from those of a normal single RGB star.

  • PDF