• Title/Summary/Keyword: Standard solution

Search Result 1,939, Processing Time 0.028 seconds

Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity (탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사)

  • Kim, Namsun;Lee, Jong-Sub;Kim, Ki-Seog;Kim, Sang Yeob;Park, Junghee
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.49-60
    • /
    • 2022
  • Underground urbanization appears to be a promising solution in response to the shortage of construction sites in the above-ground space. In this context, an accurate evaluation of a construction site ensures the long-term performance of geosystems. This study characterizes potential sites for complex plants built in underground space using geophysical methods (i.e., seismic refraction exploration and electrical resistivity survey) and in situ tests (i.e., standard penetration tests (SPTs) and downhole tests). SPTs are conducted in nine boreholes BH-1-BH-9 to estimate the groundwater level and vertical distribution of geological structures. The seismic refraction method enables us to obtain the elastic wave velocity and thickness of each soil layer for each cross-sectional area. An electrical resistivity survey conducted using the dipole array method provides the electrical resistivity profiles of the cross-sectional area. Data obtained using geophysical techniques are used to assess the classification of the soil layer and bedrock, particularly the fracture zone. This study suggests that geotechnical information using in situ tests and geophysical methods are useful references to design an underground complex plant construction.

Animal Skin Irritation and Skin Sensitization Tests of High Intensity Focused Ultrasound System Cartridges (집속형초음파자극시스템 카트리지의 동물실험을 통한 피부자극시험 및 피부 감작성시험)

  • Jun-tae, Kim;Ju-hee, Kim;Kyu-tai, Joo;Kyung-ah, Kim;Ahnryul, Choi;Jae-hyun, Jo;Jin-houng, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.477-484
    • /
    • 2022
  • In this study, the cartridge part of the focused ultrasound stimulation system was used as a sample to conduct a skin irritation test and a skin sensitization test through animal experiments among the tests related to GLP (Good Laboratory Practice), a medical device safety evaluation standard. The test was conducted after IACUC approval using 6 female New Zeland White Rabbits. The polar and non-polar stimulation indices were all '0.0'. In addition, in the case of skin sensitization evaluation, 30 guinea pigs approved by IACUC were divided into control and experimental groups, and all induction and induction steps were applied using the eluate itself without separate dilution of the test sample and blank test solution. As a result of the experiment, the skin reaction grade of the control animal was 0 grade, and there was no animal showing more than 1 grade in the skin reaction of the test animal. As a result of both tests, no abnormal skin symptoms were observed, and when applied to the human body to treat patients, the test materials used in the tests will investigate the stability of whether any diseases that cause skin abnormal symptoms will occur.

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.903-911
    • /
    • 2022
  • Groundwater, one of the resources for supplying water, fluctuates in water level due to various natural factors. Recently, research has been conducted to predict fluctuations in groundwater levels using Artificial Neural Network (ANN). Previously, among operators in ANN, Gradient Descent (GD)-based Optimizers were used as Optimizer that affect learning. GD-based Optimizers have disadvantages of initial correlation dependence and absence of solution comparison and storage structure. This study developed Gradient Descent combined with Harmony Search (GDHS), a new Optimizer that combined GD and Harmony Search (HS) to improve the shortcomings of GD-based Optimizers. To evaluate the performance of GDHS, groundwater level at Icheon Yullhyeon observation station were learned and predicted using Multi Layer Perceptron (MLP). Mean Squared Error (MSE) and Mean Absolute Error (MAE) were used to compare the performance of MLP using GD and GDHS. Comparing the learning results, GDHS had lower maximum, minimum, average and Standard Deviation (SD) of MSE than GD. Comparing the prediction results, GDHS was evaluated to have a lower error in all of the evaluation index than GD.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

A Study on Improving the Current Density Distribution of the Cathode by the Bipolar Phenomenon of the Auxiliary Anode through the Hull Cell Experiment (헐셀을 통한 보조 양극의 바이폴라 현상에 의한 음극의 전류밀도 분포 개선 영향성 연구)

  • Young-Seo Kim;Yeon-Soo Jeong;Han-Kyun Shin;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2023
  • The possibility of improving plating thickness distribution was investigated through quantitative consideration of bipolar electrodes without external power applied. By having the cathode tilted with respect to the anode, the potential distribution in the electrolyte solution adjacent to the cathode is different due to the difference in iR drop due to the path difference to the anode in each region of the cathode. The purpose of this study is to observe the bipolar characteristics in the case of an auxiliary anode for the non-uniform potential distribution of such a Hull cell. In particular, in order to evaluate the possibility of improving the non-uniform thickness distribution of the cathode by utilizing these bipolar characteristics, it was verified through experiments and simulations, and the electric potential and current density distribution around the bipolar electrode were analyzed. The electroplating in a Hull cell was performed for 75 min at a current density of 10 mA/cm2, and the average thickness is about 16 ㎛. The standard deviation of the thickness was 10 ㎛ in the normal Hull cell without using the auxiliary anode, whereas it was 3.5 ㎛ in the case of using the auxiliary cathode. Simulation calculations also showed 8.9 ㎛ and 3.3 ㎛ for each condition, and it was found that the consistency between the experimental and simulation results was relatively high, and the thickness distribution could be improved through using the auxiliary anode by the bipolar phenomenon.

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Instrumentation Management of Differential Settlement of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper (대심도 준설 매립지반에서의 층별침하 계측관리에 관한 사례 연구)

  • Tae-Hyung Kim;Seung-Chan Kang;Ji-Gun Chang;Soung-Hun Heo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • There are a lot of difference between the surface settlement and the differential settlement measured at the Busan New Port, where the dredged and reclaimed clay layer exists and below the clay is originally thickly distributed. To find the cause and solution of this, the actual conditions of each differential settlement used for the soft ground improvement, characteristics, installation method, measurement frequency, measurement data management, and data analysis of each type were considered. In the deep soft ground improvement work where large deformation occurs, the bending deformation of the screw-type differential settlement gauge is less than that of other types of measuring instruments, so there is less risk of loss, and the reliability of data is relatively high as the instruments are installed by drilling for each stratum. Since the greater the amount of high-precision settlement measurement data, the higher the settlement analysis precision. It is necessary to manage with higher criteria than the measurement frequency suggested in the standard specification. For the data management of the differential settlement gauge, it is desirable to create graphs of the settlement and embankment height of the relevant section over time, such as surface, differential, and settlement of pore water pressure gauge for each point. In the case of multi-layered ground with different compression characteristics, it is more appropriate to perform settlement analysis by calculating the consolidation characteristics of each stratum using a differential settlement data.

High Temperature Application of Iron Removal Chemical Cleaning Solvent in the Secondary Side of Nuclear Steam Generators (증기발생기 2차측 제철화학세정액의 고온적용)

  • Hur, D.H.;Lee, E.H.;Chung, H.S.;Kim, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.140-148
    • /
    • 1994
  • A qualification test was performed for the iron removal chemical cleaning of the secondary side of nuclear steam generators at the selected temperature, 1$25^{\circ}C$, higher than the standard application temperature, 93$^{\circ}C$. The field cleaning condition for a nuclear unit was tested in a bench scale test loop including a SUS 316 stainless steel autoclave with one gallon capacity as a test vessel. The kinetics of sludge dissolution, corrosion of the secondary side materials and change of solvent chemistry were monitored. Test results indicated that more thorough cleaning was accomplished in less than half of the cleaning time required at 93$^{\circ}C$. And the total corrosions of the secondary side materials were found to be less than the values at 93$^{\circ}C$. While the solvent is recirculated and heated by an external chemical cleaning equipment for the conventional 93$^{\circ}C$ process, the secondary side is heated by the lateral heat of the primary coolant without the recirculation of the cleaning solution, and the solvent is mixed by vigorous boiling induced by periodic ventilation for the high temperature process. The requirement that the reactor coolant pumps should be running during the cleaning operation is the major disadvantage of the high temperature process which also should be considered when chemical cleaning is planned for steam generators under operation.

  • PDF

Risk Assessment of Marine LPG Engine Using Fuzzy Multicriteria HAZOP Technique (퍼지 다기준 HAZOP 기법을 이용한 해상용 LPG 엔진의 위험성 평가)

  • Siljung Yeo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2023
  • Liquefied petroleum gas (LPG) is an attractive fuel for ships considering its current technology and economic viability. However, safety guidelines for LPG-fueled ships are still under development, and there have been no cases of applying LPG propulsion systems to small and medium-sized ships in Korea. The purpose of this study was to perform an objective risk assessment for the first marine LPG engine system and propose safe operational standards. First, hazard and operability (HAZOP) analysis was used to divide the engine system into five nodes, and 58 hazards were identified. To compensate for the subjectivity of qualitative evaluation using HAZOP analysis, fuzzy set theory was used, and additional risk factors, such as detectability and sensitivity, were included to compare the relative weights of the risk factors using a fuzzy analytical hierarchy process. As a result, among the five risk factors, those with a major impact on risk were determined to be the frequency and severity. Finally, the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) was applied to select the risk rank more precisely by considering the weights of the risk factors. The risk level was divided into 47 groups, and the major hazard during the operation of the engine system was found through the analysis to be gas leakage during maintenance of the LPG supply line. The technique proposed can be applied to various facilities, such as LPG supply systems, and can be utilized as a standard procedure for risk assessment in developing safety standards for LPG-powered ships.