• Title/Summary/Keyword: Standard design spectrum

Search Result 129, Processing Time 0.022 seconds

The Acceleration Response Spectrum for Simulated Strong Motions Considering the Earthquake Characteristics of the Korean Peninsula (한반도 지진특성을 고려하여 모사된 강진동에 대한 가속도 응답스펙트럼)

  • Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • The response spectrum is one of the important basic materials for the aseismic design. Numerous strong ground motions based on the seismic source characteristics for the earthquakes occurring in the Korean Peninsula were simulated to obtain the response spectra by using the computer program, SMSIM, developed by Boore (2005). Through the extensive review of other study outcomes, the input data for the simulation such as seismic source and attenuation characteristics were selected. The spectra obtained from the simulated ground motions were normalized to 1.0 g of zero period acceleration and compared with the standard response spectrum proposed by the U.S. Atomic Energy Commission (AEC, 1973). In this study, we found that the spectral values for the response spectra appeared to be larger than those of the standard spectrum in the frequency band above roughly 10 Hz. The variation of resulting response spectra was evaluated with the variable stress drops. It was shown that the spectral amplitude of the spectrum for the larger stress drop denotes higher value in the low frequency range.

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.

Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions (국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석)

  • Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2011
  • The characteristics of vertical to horizontal ratio of response spectrum from 20 recent earthquakes were analysed. Response spectrum of 260 horizontal and 130 vertical ground motions were normalized by peak ground acceleration at each resonance frequency from 0.1 to 50Hz. It has been identified that the ratio of vertical to horizontal response spectrum has strong dependancy on epicentral distance and resonance frequency. The ratio of vertical to horizontal response spectrum for the 0-50km epicentral distance group are larger than 2/3 values, which is a standard engineering rule-of-thumb V/H=2/3, at resonance frequency above 7-8Hz. All the 3 groups such as 50-100, 100-150- and 150-200km epicentral distance have shown larger values of vertical to horizontal ratio than 2/3 at resonance frequency above 15Hz and also are larger than 2/3 at resonance frequency below 8-10Hz. Even though there are differences in specific resonance frequency values which depend on the epicentral distance group, we should be careful of seismic design of vertical component of the structures winch are located within the range of about 200km distance. form the potentially seismic causative faults.

Evaluation of Seismic Fragility Curve of Seismically Isolated Nuclear Power Plant Structures for Artificial Synthetic Earthquakes Corresponding to Maximum-Minimum Spectrum (최대-최소 스펙트럼에 대응하는 인공합성지진에 대한 면진된 원전구조물의 지진취약도 곡선 평가)

  • Kim, Hyeon-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.89-99
    • /
    • 2019
  • In order to increase the seismic safety of nuclear power plant (NPP) structures, a technique to reduce the seismic load transmitted to the NPP structure by using a seismic isolation device such as a lead-rubber bearing has recently been actively researched. In seismic design of NPP structures, three directional (two horizontal and one vertical directions) artificial synthetic earthquakes (G0 group) corresponding to the standard design spectrum are generally used. In this study, seismic analysis was performed by using three directional artificial synthetic earthquakes (M0 group) corresponding to the maximum-minimum spectrum reflecting uncertainty of incident direction of earthquake load. The design basis earthquake (DBE) and the beyond design basis earthquakes (BDBEs are equal to 150%, 167%, and 200% DBE) of G0 and M0 earthquake groups were respectively generated for 30 sets and used for the seismic analysis. The purpose of this study is to compare seismic responses and seismic fragility curves of seismically isolated NPP structures subjected to DBE and BDBE. From the seismic fragility curves, the probability of failure of the seismic isolation system when the peak ground acceleration (PGA) is 0.5 g is about 5% for the M0 earthquake group and about 3% for the G0 earthquake group.

Performance-Based Evaluation of Seismic Design Proposals for RC Ordinary Moment Frames by Spectrum Revision (설계스펙트럼의 개정에 따른 철근콘크리트 보통모멘트골조의 내진성능수준 평가)

  • Shim, JungEun;Choi, Insub;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.211-217
    • /
    • 2022
  • New buildings have been designed using different seismic design standards that have been revised. However, the seismic performance of existing buildings is evaluated through the same performance evaluation guidelines. Existing buildings may not satisfy the performance targets suggested in the current guidelines, but there are practical limitations to discriminating the existing buildings with poor seismic performance through a full investigation. In this regard, to classify buildings with poor seismic performance according to the applied standard, this study aimed to evaluate performance-based investigation of the seismic design proposals of buildings with different design standards. The target buildings were set as RC ordinary moment frames for office occupancy. Changes in seismic design criteria by period were analyzed, and the design spectrum changes of reinforced concrete ordinary moment resisting frames were compared to analyze the seismic load acting on the building during design. The seismic design plan was derived through structural analysis of the target model, compared the member force and cross-sectional performance, and a preliminary evaluation of the seismic performance was performed to analyze the performance level through DCR. As a result of the seismic performance analysis through the derived design, the reinforced concrete ordinary moment frame design based on AIK 2000 has an insufficient seismic performance level, so buildings built before 2005 are likely to need seismic reinforcement.

Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes (5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.471-479
    • /
    • 2011
  • The velocity horizontal response spectra using the observed ground motions from the recent 5 macro earthquakes, equal to or larger than 4.8 in magnitude, around Korean Peninsula were analysed and then were compared to the acceleration horizontal response spectra, seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and finally the Korean Standard Design Response Spectrum for general structures and buildings. 102 velocity horizontal ground motions, including NS and EW components, were used for velocity horizontal response spectra and then normalized with respect to the peak velocity value of each ground motion. First, the results showed that velocity horizontal response spectra have larger values at the range of medium natural period, but acceleration horizontal response spectra have larger values at the range of short natural periods. Secondly, the results also showed that velocity horizontal response spectra exceed Reg. Guide 1.60 for longer natural periods bands less than 6-7 Hz. Finally, the results were also compared to the Korean Standard Response Spectrum for the 3 different soil types(SC, SD, and SE soil type) and showed that velocity horizontal response spectra revealed much higher values for the frequency bands below 1.5(SC), 2.0(SD), and 3.0(SE) seconds, respectively, than the Korean Standard Response Spectrum. The results suggest that the fact that acceleration, velocity, and displacement horizontal response spectra have larger values at the range of short, medium, and long natural periods, respectively, can be applied consistently to those form domestic ground motion, especially, the velocity ground motion. Information on response spectrum at such medium range periods can be very important since the domestic design of buildings and structures emphasizes recently medium and long natural periods than short one due to increased super high-rise buildings.

Analysis of Response Spectrum of Ground Motions from Odaesan Earthquake (2007/01/20) (오대산지진(2007/01/20) 관측자료를 이용한 응답스펙트럼 분석)

  • Kim, Jun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.871-877
    • /
    • 2007
  • The response spectrum was studied using the observed pound motion from the Odaesan Earthquake (2007/01/20), and then the results were compared to the seismic design response spectra (Reg Guide 1.60) applied to the domestic nuclear power plants. For the response spectrum analysis, 21 horizontal and 8 vertical observed Pound motions were used for normalization and statistical analysis. The results showed that the MPOSD (Mean Plus One Sigma Standard Deviation) response spectra above 10 Hz revealed higher values than the design response spectra and those below 10 Hz revealed much lower values fur both horizontal and vertical response spectra. These results suggest that the response spectra (Reg. Guide 1.60), used as seismic design code for nuclear facilities in Korea, especially above about 10 Hz, should be reexamined fur apllication to the nuclear power plants structures operated in the Korean Peninsula.

Design and Implementation of a Spectrum Engineering Simulator Based on GIS (GIS를 기반으로 한 스펙트럼 엔지니어링 시뮬레이터 설계 및 개발)

  • Lee, Hyeong-Su;Jeong, Yeong-Ho;Jeong, Jin-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.144-152
    • /
    • 1996
  • Recently, as the demands for radio spectrum are growing and the number of cell sites is increasing rapidly, the spectrum engineering plays an important role in estimating frequency sharing and reuse. The radio propagation analysis is essential in the basic technology of radio network design such as deciding the service area and selecting the position of the base station. But, domestic propagation environment in which mountainous region is occupying over 70% of our terrain does not allow us to apply foreign studies which are deduced in highly different environments. Therefore, we need to have our propagation analysis system derived from our own terrain condition. In this paper, we propose the propagation prediction model which issuitable toour propagation environment, and also usinghis model, we implement thesimulator based on GIS(Geographic Information System)which can be applied to both spectrum engineering and radio propagation analysis. We showed that this simulator can well be applied to frequency assignment, propagation network design as well as other radio services. Considering the results of our analysis, we could guarantee the standard deviation of error between the measured data and predicted results as 5 to 7 dB.

  • PDF

Estimation of Cumulative Axle-Load Spectrum for Axle-Load Distribution Standard by Vehicle Type (차종별 축하중 분포 정량화를 위한 누적 축하중 스펙트럼 추정연구)

  • An Ji-Hwan;Ohm Byung-Sik;Kim Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.29-37
    • /
    • 2006
  • The primary objective of this study is to characterize traffic axle loadings that consider Korea specific traffic conditions for developing mechanistic-based pavement design method as a part of Korea Pavement Research Program(KPRP). Although the concept of equivalent single axle load(ESAL) has been generally used since the 1960s for the pavement design, the mechanistic-based pavement design procedure requires more accurate axle loading data on the specific pavement. In this study, axle loading data were collected according to vehicle type and highway functional classification. Axle-load spectrum was then standardized by cumulative density function(cdf), because the axle load spectrum could vary from the observed site, truck traffic volume, and truck type, Finally, this study presented the procedure and S-shaped exponential models for characterizing axle load spectra according to vehicle type and highway functional classification.

  • PDF

Assessment of Anti-vibration Gloves for Reduction of Hand-transmitted Vibration Exposure (수전달 진동 피폭 저감을 위한 방진 장갑의 성능 평가)

  • Choi, Seok Hyun;Hong, Seok In;Jang, Han Kee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • In order to evaluate performance of anti-vibration gloves, it is necessary to measure the transmitted vibration to the hand and the applied forces at the same time while gripping the vibrating handle. In the study a system was developed to measure both the vibration and the forces. The system consists of a measurement handle with eight strain gauges and two accelerometers and a PC-based system with a software for signal processing, evaluation of the hand-transmitted vibration and for control of applied forces in the pre-determined range. The handle was installed on the vibration shaker which is strong enough so as not to be affected by dynamic coupling with the hand-arm. Whole procedure of ISO 10819:1996 to determine the vibration transmissibility of anti-vibration gloves was programmed into the system. As an example of the application, three subjects joined the test to get vibration transmissibilities of 9 anti-vibration gloves where each glove was tested twice a subject. Average and standard deviation of the corrected vibration transmissibility were also calculated. All tested gloves fulfilled criterion for M-spectrum($\overline{TR_M}$<1.0), but one glove fulfilled criterion for H-spectrum($\overline{TR_H}$<6.0),