• 제목/요약/키워드: Standard design spectrum

Search Result 129, Processing Time 0.504 seconds

Design of a High Efficiency Class E Amplifier for Wireless LAN (무선 LAN용 고효율 E급 증폭기 설계)

  • Park Chan-Hyuck;Koo Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.91-96
    • /
    • 2006
  • High efficiency switching mode circuits such as class I amplifiers have been well known in the MHz frequency range. The class E amplifier is a type of switching mode amplifier offering very high efficiency approaching 100%. In this paper, the class E amplifier has been designed by using the harmonic balance method of circuit simulator. The designed amplifier is realized by using pHEMT and microstrip line, shows 66% power added efficiency (PAE) at 2.4GHz with 17.6dBm output power. With -3dBm input power of wireless LAN, measured output spec01m can meet the required IEEE 802.11g standard spectrum mask. That means the required amplifier back off of 9dB from $P_{ldB}$ to satisfy the required wireless LAN spectrum mask.

A Property of Seismic Response with Log-normal Distribution at SDOF Structure (단자유도계 구조물의 로그정규분포 지진응답 특성)

  • Chung, Youn-In;Kim, Koon-Chan;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.303-308
    • /
    • 2019
  • This study suggests a method for deriving earthquake response based on log-normal distribution in order to obtain realistic and reliable probability and statistical seismic response of structures. The development of three earthquake suites were presented, with a brief description of 2%, 10%, and 50% in 50 years probability of exceedance according the USGS Los Angeles probabilistic seismic hazard maps. In order to analyze the basic dynamic behavior, a Single-Degree-of-Freedom (SDOF) structure was selected and the seismic response spectrum representing the response of each natural period was plotted. Overall, the mean response values presented through the log-normal distribution is lower than the standard normal distribution. Thus, it is considered that the former method can be provided as the effective cost on performance-based seismic design more than the latter one.

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Seismic Response Analysis of NPP Containment Structures to Improve the Guidelines of Strong Motion Duration (강진지속시간 기준 개선을 위한 원전 격납구조물의 지진응답해석)

  • Huh, Jung-Won;Jung, Ho-Sub;Kim, Jae-Min;Hyun, Chang-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • This paper addresses a fundamental study that is necessary to complement and improve the current domestic design specifications for the strong motion duration criterion and the envelope function of artificial accelerograms that can be applied to the earthquake-proof design of nuclear structures. The criteria for the design response spectra and strong motion duration suggested by USNRC and ASCE Standard 4-98 are commonly being used in the profession, and they are first compared with each other and reviewed. By applying 209 real strong earthquake records that are greater than 5 in magnitude at rock sites to the strong motion duration criterion in ASCE 4-98, an empirical regression model that predicts the strong motion duration as a function of the earthquake magnitude was then developed. Using synthetically generated earthquake time histories for the 10 cases whose strong motion durations varied from 6 to 20 seconds, extensive seismic analyses were finally conducted to identify the effects of the strong motion durations on the seismic responses of the nuclear power plant containment structures.

Design of Multi-carrier Digital Transmitter Using a Direct Conversion Scheme (직접변환방식을 이용한 멀티캐리어 디지털 송신기 설계)

  • 신관호;조성언;오창헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.425-432
    • /
    • 2003
  • In this paper, we designed a multi-carrier digital transmitter for CDMA base-station using a direct conversion scheme and verified the performance through circuit simulations. We examined a new technology required to design a multi-carrier transmitter, then designed and simulated a multi-carrier digital transmitter. ADS (Advanced Design System), RF simulation S/W of Agilent Technologies, was used for designing and simulating the multi-carrier digital transmitter. First, we simulated a digital block and an analog block separately, then performed a co-simulation for entire system. From the results, the final analog outputs of the designed multi-carrier digital transmitter met the spectrum mask characteristics of IS-97 & 3G TS 25.104 standard requirements. It means that proposed scheme could be applied to implement a multi-carrier digital transmitter for CDMA base-station. Therefore, proposed multi-carrier digital transmitter using a direct conversion scheme can accomplish cost-reduction and improvements of technology in the next CDMA base-station.

Design of a bluetooth-based interactive control network

  • Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.922-925
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connection of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments. The bluetooth system supports both point-to-point connection and point-to-multipoint connections. In point-to-multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There is one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The Bluetooth standard has been suggested that Bluetooth equipments can be used in the short-range, maximum 100 meters . It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

  • PDF

Deep UV Raman Spectroscopic Study for the Standoff Detection of Chemical Warfare Agents from the Agent-Contaminated Ground Surface (지표면 화학작용제 비접촉 탐지를 위한 단자외선 라만분광법 연구)

  • Choi, Sun-Kyung;Jeong, Young-Su;Lee, Jae Hwan;Ha, Yeon-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.612-620
    • /
    • 2015
  • Short-range detection of chemical agents deposited on ground surface using a standoff Raman system employing a pulsed laser at 248 nm is described. Mounted in a vehicle such as an NBC reconnaissance vehicle, the system is protected against toxic chemicals. As most chemicals including chemical warfare agents have unique Raman spectra, the spectra can be used for detecting toxic chemicals contaminated on the ground. This article describes the design of the Raman spectroscopic system and its performance on several chemicals contaminated on asphalt, concrete, sand, etc.

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

Analytical model of EEG by statistical mechanics of neocortical interaction

  • Park, J.M.;M.C. Whang;B.H. Bae;Kim, S.Y.;Kim, C.J.
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.165-175
    • /
    • 1997
  • Brain potential is described by using Euler Lagrange equation derived from Lagrangian based on SMNI(Statistical Mechanics of Neocortical Interaction). It is assumed that excitatory neuron firing is amplitude-modulated dominantly by the sum of two modes of frequency ${\omega}and 2 {\omega}$ . Time series of this neuron firing is numerically calculated. $I_{L}$related to low frequency distribution of power spectrum, $I_{H}$high frequency, and S(standard deviation) are introduced for the effective extraction of the dynamic property in this simulated brain potential. $I_{L}$,$I_{H}$, and S are obtained from EEG of 4 persons in rest state and are compared with thoretical results. It is of importance in various fields related to human well-being such as comfort-pursued industrial design, psychology, medicine to characterize human emotional states by EEG analysis. The pleasant and unpleasant sensation among various emotional states would be demonstrated to be determined in terms of ${\epsilon}$ and ${\gamma}$ parameters estimated by the simulated $I_{L}$-$I_{H}$-S relations.

  • PDF