• Title/Summary/Keyword: Standard Reactor

Search Result 362, Processing Time 0.031 seconds

Design and Analysis of Data-oriented Information System for Interconnected IT Convergence Devices (정보통신 융합기기 연계를 고려한 데이터 중심의 정보시스템 모델의 설계 및 분석)

  • Oh, Chang-Ik;Jeong, Jongpil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2406-2414
    • /
    • 2013
  • The data-driven IT project model has been improved by adding processes such as analysis/design of data structure and channels of data collection/distribution, application of data standard and securing the flexibility in IT convergence devices data configuration on existing informatization project procedure driven by HW and SW function. This model focused on the evaluation of improvement effect which warrants data flexibility of IT convergence device. IT convergence device was divided into sensor and reactor and a situation when new information system is additionally linked to these devices was assumed. The system improvement complexity and index on network environment were estimated and they were compared to existing method.

The Defect Inspection on the Irradiated Fuel Rod by Eddy Current Test (와전류시험에 의한 조사핵연료봉의 결함 검사)

  • Koo, D.S.;Park, Y.K.;Kim, E.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 1996
  • The eddy current test(ECT) probe of differential encircling coil type was designed and fabricated, and the optimum condition of ECT was derived for the examination of the irradiated fuel rod. The correlation between ECT test frequency and phase & amplitude was derived by performing the test of the standard rig that includes inner notches, outer notches and through-holes. The defect of through-hole was predicted by ECT at the G33-N2 fuel rod irradiated in the Kori-1 nuclear power reactor. The metallographic examination on the G33-N2 fuel rod was Performed at the defect location predicted by ECT. The result of metallographic examination for the G33-N2 fuel rod was in good agreement with that of ECT. This proves that the evaluation for integrity of irradiated fuel rod by ECT is reliable.

  • PDF

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Thermal Destruction of Waste Insulating Oil Containing PCBs under High Temperature and Pressurized Conditions

  • Seok, Min-Gwang;Lee, Gang-Woo;Lee, Jae-Jeong;Kim, Min-Choul;Kim, Yang-Do;Jung, Jong-Hyeon;Shon, Byung-Hyun
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.157-165
    • /
    • 2012
  • This experimental study was performed to obtain thermal energy from the combustion of synthetic gas, produced by the pyrolysis of insulating oil containing polychlorinated biphenyls (PCBs) in a high temperature and high pressure reactor. The average synthetic gas generated was $59.67Am^3/hr$ via the steady state gasification of insulating oil waste (20 kg/hr) with average concentrations (standard deviation) of $CO_2$, CO, and $H_2$ in the synthetic gas of $38.63{\pm}3.11%$, $35.18{\pm}1.93%$, and $28.42{\pm}1.68%$, respectively. The concentrations of the PCBs in the transformer insulating oil and synthetic gas after its gasification, and the concentrations of the dioxins that could be produced from the incomplete degradation of PCBs were measured. It was revealed that the PCBs in the insulating oil were composed of the series from tetrachlorobiphenyl to octachlorobiphenyl. However, only the #49, #44, #52, and #47/75/48 congeners were detected from the synthetic gas after gasification of the insulating oil and in the flue gas from the combustor. In conclusion, the experimental conditions suggested in this study were very useful for the appropriate treatment of insulating oil containing PCBs. Also, fuel gas containing CO and $H_2$ can be obtained from the pyrolysis of insulating oil containing PCBs.

Effects of Expanding Methods on Residual Stress of Expansion Transition Area in Steam Generator Tube of Nuclear Power Plants (원전 증기발생기 전열관 확관법이 확관부위 잔류응력에 미치는 영향)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.362-372
    • /
    • 2012
  • The steam generator tubes of nuclear power plants are pressure boundaries, and if tubes are leaked, the coolant with the radioactive materials was flowed out from the primary system to the secondary system and polluted the plant and the air. Recently most crack defects of tubes are stress corrosion cracks and these defects are located in expansion transition area, sludge pile-up region, and U-bend area. The most effective one of crack initiation factors in expansion transition area and U-bend area is the residual stress. According to the experiences of Korea standard nuclear plants(Optimized Power Reactor-1000), they had the stress corrosion cracks at the tube expansion transition area in early operating stage and especially lots of circumferential cracks were occurred. Therefore in this study, the distributions and conditions of residual stresses by tube expansion methods were compared and the dominant reason of a specific direction was examined.

Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading (이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

A Case Study on the Application of Systems Engineering to the Development of PHWR Core Management Support System (시스템엔지니어링 기법을 적용한 가압중수로 노심관리 지원시스템 개발 사례)

  • Yeom, Choong Sub;Kim, Jin Il;Song, Young Man
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2013
  • Systems Engineering Approach was applied to the development of operator-support core management system based on the on-site operation experience and document of core management procedures, which is for enhancing operability and safety in PHWR (Pressurized Heavy Water Reactor) operation. The dissertation and definition of the system were given on th basis of investigating and analyzing the core management procedures. Fuel management, detector calibration, safety management, core power distribution monitoring, and integrated data management were defined as main user's requirements. From the requirements, 11 upper functional requirements were extracted by considering the on-site operation experience and investigating documents of core management procedures. Detailed requirements of the system which were produced by analyzing the upper functional requirements were identified by interviewing members who have responsibility of the core management procedures, which were written in SRS (Software Requirement Specification) document by using IEEE 830 template. The system was designed on the basis of the SRS and analysis in terms of nuclear engineering, and then tested by simulation using on-site data as a example. A model of core power monitoring related to the core management was suggested and a standard process for the core management was also suggested. And extraction, analysis, and documentation of the requirements were suggested as a case in terms of systems engineering.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Measurement of Energy Dependent Differential Neutron Capture Cross-section of Natural Sm by Using a Continuous Neutron Flux below (연속에너지 중성자에 대한 천연 Sm의 중성자 포획단면적 측정)

  • Yoon, Jungran
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.337-341
    • /
    • 2016
  • We measured the neutron capture cross-section of natural Sm(n,${\gamma}$) reaction in the energy regions from 0.003 to 10 eV. The 46-MeV electron linear accelerator of Research Reactor Institute, Kyoto University was used for generating a continuous neutron source. The neutron time-of-flight method was adopted for energy measurement. An assembly of BGO($Bi_4Ge_3O_{12}$) scintillators composed of 12 pieces of BGO crystals measured prompt gamma rays from Sm(n,${\gamma}$) reaction. The BGO assembly was located at a distance of $12.7{\pm}0.02m$ from the neutron source. In order to determine the neutron flux impinging on the Sm, the $^{10}B(n,{\alpha}{\gamma})^7Li$ standard cross-section were used. Natural Sm(n,${\gamma}$) reaction measurement result of the neutron capture cross-section was compared with the results of evaluation of the BROND-2.2 and the previous experimental data of J. C. Chou and V. N. Kononov.

A Study on Numerical Modeling of the Induced Heat to Gaseous Flow inside the Mixing Area of Ammonia SCR System in Diesel Nox After-treatment Devices (디젤 NOx 후처리 장치에 있어서 암모니아 SCR 시스템 혼합영역 내 가스유동의 유입열 수치모델링에 관한 연구)

  • Bae, Myung-Whan;Syaiful, Syaiful
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.897-905
    • /
    • 2008
  • Selective catalytic reduction(SCR) is known as one of promising methods for reducing $NO_x$ emissions in diesel exhaust gases. $NO_x$ emissions react with ammonia in the catalyst surface of SCR system at working temperature of catalyst. In this study, to raise the reacting temperature when the exhaust gas temperature is too low, a heater is located at the bottom of SCR reactor. At an ambient temperature, ammonia is radially injected perpendicular to the exhaust gas flow at inlet pipe and uniformly mixed in the mixing area after being impinged against the wall. To predict the turbulent model inside the mixing area of SCR system, the standard ${\kappa}\;-\;{\varepsilon}$ model is applied. This work investigates numerically the effects of induced heat on the gaseous flow. The results show that the Taylor-$G{\ddot{o}}rtler$ type vortex is generated after the gaseous flow impinges the wall in which these vortices influence the temperature distribution. The addition of heat disturbs the flow structure in bottom area and then stretching flow occurs. Vorticity strand is also formed when heat is continuously increased. Constriction process takes place, however, when a further heat input over a critical temperature is increased and finally forms shed vortex which is disconnected from the vorticity strand. The strong vortex restricts the heat transport in the gaseous flow.