• Title/Summary/Keyword: Standard Penetration Test (SPT)

Search Result 96, Processing Time 0.021 seconds

Performance of KICT-type Large Penetration Test (LPT) (한국형 대형관입시험 장비의 개발 및 현장 적용성 평가)

  • Kim, Young-Seok;Kim, Young-Chin;Hong, Sung-Wan;Kang, Jae-Mo;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.603-610
    • /
    • 2007
  • It is well known that the standard penetration test (SPT) has been used in all over the world to get geotechnical properties of the ground. However, it is difficult to apply the SPT to the dense sand, gravel, weathered rock, etc. For the application of the SPT in these grounds, it is necessary to change in the diameter and the impact energy of the SPT. For the improvement of site investigation technology, Large Penetration Testing device (KICT-type LPT) was developed and applied to the in situ condition. The drop height and weight of the hammer in developed system were decided as 760 mm and 150 kg, respectively. Semi-auto hammer drop system identical with KS F2307 and JI A1259S was adopted. And the developed sampler has the inner diameter of 63 mm and the length of 500 mm with the adjustment of energy ratio to the SPT of 1.5. The hammer energy level was measured during the performance of the KICT-type LPT using SPI system (quality control system from driven piles).

  • PDF

Evaluation of Shear Wave Velocity Profiles by Performing Uphole Test Using SPT (표준관입시험을 이용한 업홀시험에서 전단파 속도 주상도의 도출)

  • 김동수;방은석;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Uphole test is a seismic field test using receivers on ground surface and a source in depth. In this paper, the uphole test using SPT(standard penetration test) which is economical and reliable for obtaining shear wave velocity profile was introduced. In the proposed uphole test, SPT sampler which is common in site investigation, was used as a source and several 1Hz geophones in line were used as receivers. Test procedures in field and interpretation methods for obtaining interval times and for determining shear wave velocity profile considering refracted ray path were introduced. Finally, uphole test was performed at three sites, and the applicability of the proposed uphole test was verified by comparing wave velocity profiles determined by the uphole test with the profiles determined by downhole test, SASW test and SPT-N values.

Cross-Validation of SPT-N Values in Pohang Ground Using Geostatistics and Surface Wave Multi-Channel Analysis (지구통계기법과 표면파 다중채널분석을 이용한 포항 지반의 SPT-N value 교차검증)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.393-405
    • /
    • 2020
  • Various geotechnical information is required to evaluate the stability of the ground and a foundation once liquefaction occurs due to earthquakes, such as the soil strength and groundwater level. The results of the Standard Penetration Test (SPT) conducted in Korea are registered in the National Geotechnical Information Portal System. If geotechnical information for a non-drilled area is needed, geostatistics can be applied. This paper is about the feasibility of obtaining ground information by the Empirical Bayesian Kriging (EBK) method and the Inverse Distance Weighting Method (IDWM). Esri's ArcGIS Pro program was used to estimate these techniques. The soil strength parameter of the drilling area and the level of groundwater obtained from the standard penetration test were cross-validated with the results of the analysis technique. In addition, Multichannel Analysis of Surface Waves (MASW) was conducted to verify the techniques used in the analysis. The Buk-gu area of Pohang was divided into 1.0 km×1.0 km and 110 zones. The cross-validation for the SPT N value and groundwater level through EBK and IDWM showed that both techniques were suitable. MASW presented an approximate section area, making it difficult to clearly grasp the distribution pattern and groundwater level of the SPT N value.

Evaluation of Ground Improvement on Sands at Yongjong Island Geotechnical Experimental Site (영종도 지반공학 야외시험장에서의 사질토지반 개량효과 평가)

  • 김동수;박형춘;김영웅;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.439-446
    • /
    • 1999
  • In situ experimental studies were Performed at Yongjong Island Geotechnical Experimental Site to evaluate the ground densification on sand deposited. Standard penetration test, cone penetration test, and SASW test were performed and soil profiles and quality of ground improvements were evaluated. The feasibility of applying SASW method were verified by comparing test results. The evaluation technique of in-situ density using SASW and resonant column tests was proposed, and the reliability of proposed method was verified by performing case studies.

  • PDF

Analysis on the efficiency of underwater SPT module and stability for seabed type geotechnical investigation equipment (무인 착저식 지반조사 장비의 안정성 검토 및 수중 SPT효율 분석)

  • Kim, Woo-Tae;Jang, In-Sung;Ko, Jin-Hwan;Shin, Chang-Joo;Kwon, O-Soon;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1778-1785
    • /
    • 2014
  • In order to construct offshore structures safely, geotechnical investigation should be carried out with high accuracy. Up to now, onshore geotechnical investigation equipments installed on the barge are used for offshore geotechnical investigation. In this case, many limitations can be confronted such as deep water depth, high wave, strong current, severe wind and so on. For the safe and economic offshore geotechnical investigation with high precision, a seabed type unmanned automated site investigation equipment is developed. It can be operated remotely underwater conditions with 100m water depth and can explore the ground depth of 50m. Also, the standard penetration test (SPT), soil boring, soil sampling and rock coring can be possible using the equipment. Numerical analysis was conducted to secure the stability of the equipment against current of 4 knot. Energy efficiency of SPT apparatus which is attached to the equipment shows 78% in average.

Ratio of Hammer Energy and Dynamic Efficiency of Standard Penetration Test (표준관입 시험 해머의 에너지비와 동적효율)

  • Lee, Chang-Ho;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.5-12
    • /
    • 2005
  • SPT hammer energy and its delivery are hon to influence the N value. The SPT hammer energy is classified into theoretical energy, velocity energy, rod energy and dynamic efficiency. In this study, the rod energy and the velocity energy are measured directly by PDA and Digital Line-Scan Camera which are most widely used type of SPT apparatus in Korea. The Dynamic efficiency is calculated through measured data. As the results of this study, the averages of rod energy ratio of donut, safety and automatic hammer are measured at 49.57, 61.60, and at $87.04\%$ by FV method. The averages of hammer velocity of donut, safety and automatic hammer are measured at $3.177{\pm}0.872$, $3.385{\pm}0.681$, and at $3.651{\pm}0.550$ m/s by Digital Line-Scan Camera, with the dynamic efficiencies at 0.732, 0.801, and 0.973 respectively.

Hammer Energy Level of SPT in Korea (표준관입시험의 해머에너지 수준)

  • 이호준;박용원
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.117-126
    • /
    • 1996
  • In spite of many advantages such as the simplicity in test procedure, Standard Penetration Test(SPT) results contain some errors caused by the variability of test equipment, instruments and test procedures. Especially, it is inevitable that the measured SPT hammer energy is different from the theoretical value because of energy loss. In this paper, the hammer energy level is measured during the performance of the field SPT in Korea by using a ultra-sonic system and PC.program. As the results of this study, the average hammer energy ratio of the R-P hammer and the Trip hammer is calculated at 64.2%, and at 75.0% respectively. The average energy ratio of the SPT for the R-P hammer is calculated at 46% and at 54% for the Trip hammer, by applying the rod energy ratio 0.72.

  • PDF

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

Evaluation of Maximum Shear Modulus of Silty Sand in Songdo Area in the West Coast of Korea Using Various Testing Methods (다양한 시험 방법을 이용한 서해안 송도 지역에 분포하는 실트질 모래의 최대 전단탄성계수 평가)

  • Jung Young-Hoon;Lee Kang-Won;Kim Myoung-Mo;Kwon Hyung-Min;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.65-75
    • /
    • 2005
  • Maximum shear modulus of soil is a principal parameter for the design of earth structures under static and dynamic loads. In this study, the statistical data of maximum shear moduli of silty sands in Songdo area in the west coast of Korea evaluated by various field and laboratory tests - standard penetration test (SPT), cone penetration test (CPT), self-boring pressuremeter test (SBPT), downhole test (DH), seismic cone penetration test (SCPT) and resonant column test (RC) were analyzed. Based on the measurement of shear moduli using DH which is known as maximum value at very small strain, the new empirical correlations between shear moduli and SPT or CPT values were proposed. Predictions of maximum shear moduli using the proposed correlations were compared with the data obtained from DH. The good agreement confirmed that the proposed correlations reasonably predicted the maximum shear moduli of silty sands in the area.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.