• Title/Summary/Keyword: Standard Operation Time

Search Result 653, Processing Time 0.03 seconds

The Establishment Plan of Strong-Motion Instrumentation of Dams for Monitoring of Seismic Behavior and Taking An Urgent Countermeasure (댐의 지진관측 및 내진대책 수립을 위한 지진계측시스템 구축 방안에 관한 연구)

  • Oh, Byung-Hyun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1588-1595
    • /
    • 2005
  • In this study, the installation location of accelerometer and accelerograph for dam are investigated in the field to establish of emergency action against dam failure when earthquake occur and to guarantee the results of seismic stability of dams which are analysed with dynamic analysis method during 1999 to 2003 by KOWACO. By a comparative study concerning of domestic and foreign guidelines of seismic strong motion instrumentation for dams, "Guidelines of Seismic Strong-Motion Instrumentation Installation, Operation and Maintenance for Dams" is established to set up the standard of seismic strong-motion instrumentation for dam, are supervised by KOWACO There is some problems in taking a measure of stability of dams when earthquake event occur because the existing seismic strong motion instruments are operated independently. This make difficult to confirm the occurrence of seismic event. For that reason, in this study the plan of unified operation and maintenance system for strong-motion instrument for dams is designed. It will make possible real-time seismic monitoring, data transmission and receiving, giving warning for earthquake, and exchanging data with national seismic network.

  • PDF

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Evolutionary Operation (EVOP) to Optimize Whey-Independent Serratiopeptidase Production from Serratia marcescens NRRL B-23112

  • Pansuriya, Ruchir C.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.950-957
    • /
    • 2010
  • Serratiopeptidase (SRP), a 50 kDa metalloprotease produced from Serratia marcescens species, is a drug with potent anti-inflammatory property. In this study, a powerful statistical design, evolutionary operation (EVOP), was applied to optimize the media composition for SRP production in shake-flask culture of Serratia marcescens NRRL B-23112. Initially, factors such as inoculum size, initial pH, carbon source, and organic nitrogen source were optimized using one factor at a time. The most significant medium components affecting the production of SRP were identified as maltose, soybean meal, and $K_2HPO_4$. The SRP so produced was not found to be dependent on whey protein, but rather was notably induced by most of the organic nitrogen sources used in the study and free from other concomitant protease contaminant, as revealed by protease inhibition study. In addition, experiments were performed using different sets of EVOP design with each factor varied at three levels. The experimental data were analyzed with a standard set of statistical formula. The EVOP-optimized medium, with maltose 4.5%, soybean meal 6.5%, $K_2HPO_4$ 0.8%, and NaCl 0.5% (w/v), gave a SRP production of 7,333 EU/ml, which was 17-fold higher than the unoptimized media. The application of EVOP resulted in significant enhancement of SRP production.

Frit-Inlet Asymmetrical Flow Field-Flow Fractionation (FI-ARIFF): A Stopless Separation Technique for Macromlecules and Nanopariticles

  • Mun, Myeong Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.337-348
    • /
    • 2001
  • This article gives an overview of a recently developed channel system, frit-inlet asymmetrical flow field-flow fractionation (FI-AFlFFF), which can be applied for the separation of nanoparticles, proteins, and water soluble polymers. A conventiona l asymmetrical flow FFF channel has been modified into a frit-inlet asymmetrical type by introducing a small inlet frit near the injection point and the system operation of the FI-AFlFFF channel can be made with a great convenience. Since sample components injected into the FI-AFlFFF channel are hydrodynamically relaxed, sample injection and separation processes proceed without interruption of the migration flow. Therefore in FI-AFlFFF, there is no requirement for a valve operation to switch the direction of the migration flow that is normally achieved during the focusing/relaxation process in a conventional asymmetrical channel. In this report, principles of the hydrodynamic relaxation in FI-AFlFFF channel are described with equations to predict the retention time and to calculate the complicated flow variations in the developed channel. The retention and resolving power of FI-AFlFFF system are demonstrated with standard nanospheres and protreins. An attempt to elucidate the capability of FI-AFlFFF system for the separation and size characterization of nanoparticles is made with a fumed silica particle sample. In FI-AFlFFF, field programming can be easily applied to improve separation speed and resolution for a highly retaining component (very large MW) by using flow circulation method. Programmed FI-AFlFFF separations are demonstrated with polystyrene sulfonate standards and pululans and the dynamic separation range of molecular weight is successfully expanded.

Development of Continuous Real-time COD Measurement Sensor with Double Beam and Multiple Wavelength Analysis (더블 빔 구조, 다파장 분석을 적용한 연속식 실시간 COD 측정 센서 개발)

  • Lee, Joon-Seok;Shin, Daejung;Hyoung, Gi-Woo;Ryu, In-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.272-277
    • /
    • 2014
  • At present, the index of chemical oxygen demand (COD) is widely used as an indicator of organic water pollution with biochemical oxygen demand (BOD). But, traditional COD measurement method are not only with various chemical reagents exhausted, but also long time consumed, the operation procedure and the modification are much professional. This paper reported a novel COD measurement system using double-beam and multiple wavelength analysis UV-VIS spectrometries. It consists of pulsed xenon lamp, two-way optical fiber, optical switch, spectrometer and main processor. Proposed COD measurement system obtains any spectral information of water sample (KHP standard sample and two river water and wastewater) and reference sample (distilled water) in the range of 200~520 nm, corresponding to the COD concentration from 0 to 300 mg/L through calculating the UV absorbance. The system show improved precision and can work continuously fast at time interval about 25 seconds.

Analysis of Perchlorate in Water Using Ion Chromatograph with Preconcentration (이온크로마토그래프를 이용한 수중의 퍼클로레이트 농축 및 분석)

  • Kim, Hak-Chul
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.29-38
    • /
    • 2006
  • This study included the development of analytical method for determining perchlorate in water sample. The analytical condition was referred in EPA 314.0 method which use ion chromatography and the concentrator column was replaced by the guard column. Concentrating 10mL raw or treated water sample on to AGl6 guard column made it possible to get the LOD(Limit of Detection) of $0.73\;{\mu}g/L$. The total run time was 11 minutes and during run time next sample could be concentrated on AGl6 guard column. Compared to the Concentration method which needed manual operation, the Direct Injection method could screen the many water samples. The LOD of the Direct Injection method was higher and the sensitivity was lower than that of the Concentration method. The RSDs(Relative Standard Deviations) were lower than 2.5 % for peak height and 0.7 % for retention time in pre-concentration methods. This method Showed good reproducibility and reliability and it was thought the deviations of recovery value could be reduced by considering column capacity and making water sample homogeneous. Matrix Elimination could be done using the pre-concentration method if perchlorate were in complex matrix of sample.

Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

  • Kim, Yong-Hwan;Kim, Dong-Hyeok;Yi, Joo-Young;Kim, Je-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • This paper proposes a low-latency Sample Adaptive Offset filter (SAO) architecture and its Single Instruction Multiple Data (SIMD) optimization scheme to achieve fast High Efficiency Video Coding (HEVC) decoding in a multi-core environment. According to the HEVC standard and its Test Model (HM), SAO operation is performed only at the picture level. Most realtime decoders, however, execute their sub-modules on a Coding Tree Unit (CTU) basis to reduce the latency and memory bandwidth. The proposed low-latency SAO architecture has the following advantages over picture-based SAO: 1) significantly less memory requirements, and 2) low-latency property enabling efficient pipelined multi-core decoding. In addition, SIMD optimization of SAO filtering can reduce the SAO filtering time significantly. The simulation results showed that the proposed low-latency SAO architecture with significantly less memory usage, produces a similar decoding time as a picture-based SAO in single-core decoding. Furthermore, the SIMD optimization scheme reduces the SAO filtering time by approximately 509% and increases the total decoding speed by approximately 7% compared to the existing look-up table approach of HM.

Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine

  • Tian, Zhongda;Ren, Yi;Wang, Gang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1841-1851
    • /
    • 2018
  • For the safe and stable operation of the power system, accurate wind power prediction is of great significance. A wind power prediction method based on empirical mode decomposition and improved extreme learning machine is proposed in this paper. Firstly, wind power time series is decomposed into several components with different frequency by empirical mode decomposition, which can reduce the non-stationary of time series. The components after decomposing remove the long correlation and promote the different local characteristics of original wind power time series. Secondly, an improved extreme learning machine prediction model is introduced to overcome the sample data updating disadvantages of standard extreme learning machine. Different improved extreme learning machine prediction model of each component is established. Finally, the prediction value of each component is superimposed to obtain the final result. Compared with other prediction models, the simulation results demonstrate that the proposed prediction method has better prediction accuracy for wind power.

Radiation Exposure Evaluation Depending on Radiation Workers' Locations during Dental Radiography (치과방사선 검사 시 방사선작업종사자의 위치에 따른 방사선 노출 평가)

  • Jeong, Cheonsoo;Kim, Jiyoung
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.433-438
    • /
    • 2015
  • To evaluate the radiation exposure level based on radiation workers' locations in dental radiography, the radiation dose rate in the radiographic room, lead glass, and operation system was measured. To that end, various devices were used, such as a Standard(Max-GLS, Shinhung), a panorama (PCH-2500, Vatech), a cephalometric radiography (PCH-2500), and a cone beam CT (PHT-30LFO, Vatech), as well as a PM1405 equipment as a radiation meter. Radiography conditions were set the same as the factors used in the clinical setting. As the result, the cone beam CT turned out the highest with 98 uSv and the standard showed the lowest level with 0.4 uSv/h. The panorama was measured to be higher than the Cephalo due to its different focus mode. On the lead glass surface and in the operation stand, the oral radiography device, panoramic, and Cephalo all were measured below the recording level. However, the cone beam CT was measured to have the leakage dose. Thus, radiation involved workers should be equipped with appropriate protection tools and reduce radiography time as much as possible. In addition, the structure of the radiation chamber should be also designed efficiently. Dental radiography has continued to grow in recent years, so it is necessary take appropriate protection measures for patients and radiation workers.

Evaluation of Water Quality Characteristics of Floor Fountains in Gwangju (광주지역 바닥분수의 수질특성 평가)

  • Kim, Jong-Min;Kim, Ha-Ram;Jang, Seo-Eun;Choi, Yeong-Seop;Kang, Yu-Mi;Jung, Sook-Kyoung;Cho, Young-Gwan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.2
    • /
    • pp.143-156
    • /
    • 2017
  • The purpose of this study was to investigate water quality through a field survey at six floor fountain sites. The floor fountain facilities were designed and operated in such a way that tap water was stored in a water tank and recycled repeatedly. The water tank was cleaned once or twice per week in the summer. The number of facility users was low during the day due to sweltering heat, but up to 40 people, mainly children, were using them around 8 pm. Since the operation time was as short as 30 minutes, it is considered necessary to extend it for at least one hour for the number of users. As a result of the water quality test of the reservoir tank prior to operation after cleaning, it was measured to be within drinking water quality standards at the six facilities. As a result of the water quality test after use, ammonia nitrogen was measured to be 1.45 mg/L at Site IV. This exceeded the drinking water quality standard of 0.5 mg/L. In the case of turbidity, two cases exceed at 7.38 and 4.52 NTU when applying 4 NTU as the water quality standard for waterscape facilities. Twenty-eight cases exceed the standard of drinking water quality. The result of microbiological tests, at five sites excepting Site I, where disinfectant was injected, was that the maximum total colony count was 180,000 CFU/mL, total coliforms was 2,100,000 CFU/100 mL, fecal coliforms was 4,600 CFU/100 mL, Escherichia coli was 170 MPN/100 mL and Enterococcus was 100 CFU/100 mL. This exceeded the water quality standards of drinking water. Children are very likely to inhale because the water spews from below and falls from above, so it is necessary to apply water quality standards for ammonia nitrogen, turbidity and microbes. Current floor fountain facilities are highly susceptible to disease caused by microbial contamination because of water cycling and reuse, so it is necessary to change the water every day, clean the water tank, and perform chlorination. Therefore, it is necessary to inject calcium hypochlorite according to the free chlorine water quality standard of swimming pools with a different water tank capacity. In addition, facilities should be improved to prevent the reuse of water by installing the water tank at a separate location.