• 제목/요약/키워드: Standard K-$\varepsilon$model

검색결과 239건 처리시간 0.022초

삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰- (Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models-)

  • 백세진;유정열
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.999-1011
    • /
    • 1989
  • 본 연구의 목적은 첫째, 재발달 경계층에서의 난류에서지 및 난류전단응력에 대한 전달방정식들의 각 항의 측정자료들을 보다 정확히 제시하고 항들간의 균형을 비교 평가함으로써 비평형 유동으로부터 평형유동으로 회복되는 과정을 검토하고, 둘째, 대표적인 난류 모델들로써 표존 k-.epsilon.모델 및 레이놀즈 응력 모델을 사용한 수치계산을 수행함으로써 이와같은 모델들이 비평형 유동을 서술함에 있어 발생될 수 있는 문제점들을 고찰하는데 있다.

2차원 증기터어빈 익렬유동의 수치적 해석 (A Numerical Analysis on Two-Dimensional Viscous Flowfield around a Steam Turbine Cascade)

  • 김유일;김귀순;김경천;하만영;박호동
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.64-69
    • /
    • 1995
  • A computer code for solving the Reynolds averaged full Navier-Stokes equations has bent developed for analysis of gas and steam turbine cascade flows with the option of using one of two types of turbulence model. One is the Baldwin-Lomax model and the other is standard $k-{\varepsilon}$ model. The numerical integration is based on the explicit four stage Runge-Kutta scheme and finite volume method. To be verified, the resulting code is applied to VKI turbine cascade and compared with the previous experimental results. Finally, the flowfield around a steam turbine cascade is analyzed. Comparisons with experimental data show that present numerical scheme is an accurate Navier-Stokes solver and can give very good predictions for both gas and steam turbine cascade flow.

  • PDF

초고압 차단부 아크방전 수치해석 및 난류모델에 관한 연구 (STUDY ON NUMERICAL ANALYSIS AND TURBULENCE MODELS FOR ARC DISCHARGES IN HIGH-VOLTAGE INTERRUPTERS)

  • 이종철
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we calculated arc discharges and flow characteristics driven by arcs in a thermal puffer chamber, which is one of most outstanding high-voltage interrupters, for understanding the complex physics and the probability of thermal breakdown. The four main parts of arc model for this virtual-reality are radiation, PTFE ablation, Cu evaporation, and turbulence. Among these important parts the turbulence model can be critical to the reliability of computation results during the whole arcing history because the plasma flow is affected by high heat energy and mass momentum. Two turbulence models, the Prandtl's mixing length model and the standard $k-\varepsilon$ model, are applied for these calculations and are compared with pressure-rise inside chamber and arc voltage between the contacts as well as flow characteristics near current zero.

Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models

  • Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.647-670
    • /
    • 2013
  • The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.

A review on development in design of multistage centrifugal pump

  • Rode, Bhushan R.;Khare, Ruchi
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.43-53
    • /
    • 2021
  • Multi-stage pumps are the most popular pumps among various kinds of centrifugal pumps. Athorough review of different kinds of literature has led to the conclusion that there is a desperate need to increase the performance of the multi-stage centrifugal pump. Many investigators have put their efforts to increase the pump performance and also the work is being projected on various aspects of pump performance variables. To improve the multistage centrifugal pump performance by investigation, modification, and analysis many works of literature are available. For analysis, many researchers used the Navier-Stokes solver to create the three-dimensional unsteady turbulent flow numerical model with the standard k-ε turbulent equation. This paper mainly focuses on research related to the multi-stage centrifugal pump.

Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model

  • Ozdemir, Yavuz Hakan;Barlas, Baris
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.149-159
    • /
    • 2017
  • In this study, the numerical investigation of ship motions and added resistance at constant forward velocity of KVLCC2 model is presented. Finite volume CFD code is used to calculate three dimensional, incompressible, unsteady RANS equations. Numerical computations show that reliable numerical results can be obtained in head waves. In the numerical analyses, body attached mesh method is used to simulate the ship motions. Free surface is simulated by using VOF method. The relationship between the turbulence viscosity and the velocities are obtained through the standard ${\kappa}-{\varepsilon}$ turbulence model. The numerical results are examined in terms of ship resistance, ship motions and added resistance. The validation studies are carried out by comparing the present results obtained for the KVLCC2 hull from the literature. It is shown that, ship resistance, pitch and heave motions in regular head waves can be estimated accurately, although, added resistance can be predicted with some error.

3차원 모형기관 실린더내의 흡입과정 유동에 대한 수치해석 (A Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Model Engine)

  • 하각현;김원갑;최영돈
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.1-12
    • /
    • 1994
  • A model engine having a flat cylinder head and a piston face and an off-center intake valve is investigated in this analysis. Calculation domain is confined to the half of the cylinder with swirl free inlet velocity condition. Due to the absence of measured inlet conditions, the inlet flowrates during induction period are calculated from overall mass and energy conservation requirements. Finite difference equation for velocity and pressure were solved by modified SIMPLER algorithm, standard k-$\varepsilon$turbulence model and hybrid scheme. From the result of prediction, dimensionless velocity distribution and turbulence intensities are investigated at each crank angle.

  • PDF

Analysis of Viscous Free Surface Flow around a Ship by a Level-set Method

  • Park, Il-Ryong;Chun, Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제6권2호
    • /
    • pp.37-50
    • /
    • 2002
  • In the present numerical simulation of viscous free surface flow around a ship, two-fluids in-compressible Reynolds-averaged Navier-Stokes equations with the standard $\textsc{k}-\varepsilon$turbulence model are discretized on a regular grid by using a finite volume method. A local level-set method is introduced for capturing the free surface movement and the influence of the viscous layer and dynamic boundary condition of the free surface are implicitly considered. Partial differential equations in the level-set method are discretized with second order ENO scheme and explicit Euler scheme in the space and time integration, respectively. The computational results for the Series-60 model with $C_B=0.6$ show a good agreement with the experimental data, but more validation studies for commercial complicated hull forms are necessary.

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.