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Abstract

In the present numerical simulation of viscous free surface flow around a ship, two-fluids in-
compressible Reynolds- averaged Navier-Stokes equations with the standard k — e turbulence
model are discretized on a regular grid by using a finite volume method. A local level-set
method is introduced for capturing the free surface movement and the influence of the viscous
layer and dynamic boundary condition of the free surface are implicitly considered. Partial
differential equations in the level-set method are discretized with second order ENO scheme
and explicit Euler scheme in the space and time integration, respectively. The computational
results for the Series-60 model with Cg=0.6 show a good agreement with the experimental
data, but more validation studies for commercial complicated hull forms are necessary.
Keywords: local level-set method, viscous free surface flow, RANS equations,
finite volume method

1 Introduction

In the field of ship hydrodynamics, it is of prime importance to develop an accurate and efficient
numerical scheme for the calculation of viscous free surface flow around a hull by using compu-
tational fluid dynamics(CFD). It takes much effort and time to generate grid topology and also
long computation time for viscous free surface flow analysis for ships while the potential flow
analysis is relatively easy in terms of computational time and numerical handling. However, the
rapid growth of the computer technology and the development of new numerical techniques enable
speedy simulations of these viscous free surface problems to become possible. In recent papers
for the viscous ship wave problems, there are many outstanding computational results(Farmer et
al 1994, Hino 1994, Bet et al 1998, Tahara and Stern 1996, Lee 1997, Kim 2000, Kim and Kim
2001). These numerical results show good agreements with experimental results on wave patterns
and hydrodynamic forces, but it is still necessary to improve the solutions of viscous dominant
flows, stern flow and bow breaking wave, etc. As of recent days, boundary element method has
been efficiently used to solve the nonlinear behaviors of wave breaking or more complicated free
surface phenomena. With the development of computational fluid dynamics, various complex in-
teracting interface and multi-phase problems with viscous effect which are difficult for the bound-
ary element methods to treat have been analyzed by viscous flow solvers with various free surface
treatments.
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For the free surface treatment, two main approaches, front tracking & front capturing meth-
ods, have been used. In front capturing methods, the level-set scheme which is taken as the present
numerical method for capturing the free surface has been only recently used in ship hydrodynamic
problems(Vogt 1998, Bet et al 1998, Park and Chun 1999(a), Park and Chun 1999(b), Hochbaum
and Schumann 1999, Hino 2000, Hochbaum and Vogt 2000, Park 2000). The level-set method
is a numerical technique which can follow the evolution of interfaces. These interfaces can de-
velop sharp corners, break apart, and merge together. The level-set method has a wide range of
applications such as fluid mechanics, combustion, manufacturing of computer chips, computer
animation, image processing, structure of snowflakes, and the shape of soap bubbles. Especially
for many complex free surface problems(e.g. breaking wave, spray phenomena, sloshing in a
liquid tank, slamming problem, water-exit problem and bubble problem) in the naval hydrody-
namics, this method is a provocative approach that could be used as a robust numerical scheme.
The level-set method doesn’t need the complex bookkeeping scheme in the computational pro-
cedure. It is rather easier to extend the level-set method to three-dimensional problems. On the
other hand, there are some drawbacks compared with the front tracking methods. High order ac-
curacy and area or volume conservation can be lost more or less around the free surface and a
special treatment must be introduced for maintaining the uniform thickness around the interface.
Although these drawbacks exist in the level-set method, the drawback of the front tracking method
can be avoided by using the level-set method and it is certified from the systematic application to
two- and three-dimensional complex hydrodynamic problems with the free surface conducted by
Vogt(1998), Park and Chun(1999(a), 1999(b)) and Park(2000).

In the present paper, a local level-set method is introduced for capturing the free surface move-
ment and the dynamic boundary condition of the free surface is implicitly considered. Two-fluids
Reynolds-averaged Navier-Stokes(RANS) equations are solved on a regular grid by using a fi-
nite volume method. The present discretizations of the governing equations are of second order
in space integration. The standard & — ¢ turbulence model is employed for the turbulence clo-
sure. The numerical results for the Series-60 model with C5=0.6 are compared with experimental
results taken from Toda et al(1991). The present study intends to investigate the numerical char-
acteristics and applicability of the local level-set scheme in ship wave problems.

2 Mathematical formulation

2.1 Governing equations

In the three-dimension problem, the general integral level-set form of the time-averaged conserva-
tion equations of mass, two-fluids incompressible Navier-Stokes equations and turbulent kinetic
energy dissipation rate can be written as

J[[ 2e@nd [[eon-rwve-as=[[[sa

where u = (u1,ug,u3) is the velocity vector of fluid, ¢ is any conservative quantity, Iy is the
associated diffusive coefficient, S, is the volumetric source term of g and p is the fluid density. ¢
is a level-set function and the details of the level-set method will be described in the next chapter.

This integral level-set form equation contains implicitly the air-water boundary condition,
namely, the dynamic free surface boundary conditions. Equation (1) can be written in the vec-
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tor form as

/// -B—Udﬂ'f‘// (Fconv - Fdlﬂ') -dS = // Bdf} (2)
Q 3t S Q

where vectors U, Feonv — Faig and B are defined as
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where p is the pressure, k is the turbulent kinetic energy, ¢ is the turbulent dissipation rate, pefs =

L+ pe, o is the viscosity of the fluid, p; is the turbulent eddy viscosity and Gy is the rate of

production of turbulence kinetic energy defined as
ou?  Oui  Oul Oug  Ow

0 0 0 0
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The constants of the standard & — € turbulence model are defined in Table 1.

Table 1: Constants of the standard k — ¢ turbulence model
C i Cl CQ O O¢ X

X2
0.09 1.44 1.92 1.0 (E=ANA 041

2.2 Level-set formulation

As seen in Figure 1, the immiscible and incompressible two-phase fluids are described by their
densities (p1,p2) and viscosities (u1,u2), where these physical properties are constant in each sub-
domain. In the fluid domain €2, the interface I represents a boundary of two fluids and through this
boundary the physical properties are discontinuous. The interface moves with the flow according
to the velocity field, and the deformation and movement of the interface influence the velocity
field. Moving interface problems can be formulated as level-set functions on a fixed domain,
where the interface is zero-level-set:

I ={x e R?: ¢(x,t) =0} &)

There are many functions for describing the zero-level-set, I'. The signed distance level-set
function is more stable and suitable for describing the interface. At one side of the interface the
level-set function can be defined as the following conditions:

0 = {x e R?: ¢(x,t) > 0} (6)
Q= {x e R®: ¢(x,t) < 0} 7
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air( ¢ < 0) <, ,, p,)

Hull T =

W, | ¢| < const.
: local level-set tube

water{ ¢ > 0) €2, (1. P2

Figure 1: Definition sketch of the flow domain

These formulas can be calculated everywhere that ¢(x,t) is known. The movement of the
interface can be described by solving a Hamilton-Jacobi type equation.

Br) B
5, Tu V=0 ®)

This approach allows merging, breaking and other topological changes to be handled auto-
matically. In the present work, second order ENO scheme(Harten et al 1987) is used for spatial
derivative in (8) and explicit Euler scheme is used for time integration.

2.2.1 Thickness of the interface

By the definition of this level-set function, the density and viscosity coefficients can be defined as
follows:

p(®) = p1+ (p2 — p1)H(9) )
(B) = p1 + (p2 — 1) H (o) (10)

where H(¢ > 0) =1, H(¢ <0)=0and H(¢p =0) = 1/2.

Since density and viscosity change sharply across the interface, it is necessary to give the
interface a fixed thickness that is proportional to the grid size. This allows to replace p(¢) and
1(¢) by smoothed functions, p,(¢), . (¢), which are given by

Pu(®) = p1+ (p2 — p1)Hu(9) (1D
(@) = p1 + (p2 — p1) Ho () (12)
with
0 if ¢ < —w
Hy(¢) =11+ 2 + Lsin(x2)) if |¢|<w (13)
1 if ¢>w

where w is the thickness of the interface and this value can be defined by w = aAh, where « is
constant which is usually taken as 2~4 and Ah is the grid size.
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2.2.2 Reinitialization procedure

Even though the evolution equation (8) is computed accurately, the initial signed distance property
of the level-set function ¢q could be destroyed due to flat and/or steep regions at the interface. As
calculation goes on, the magnitude of the level-set gradient |V ¢| fails to maintain to have unity.
This makes computation, level-set contour plotting and conservative properties highly inaccurate.
In order to prevent these inaccuracies, it is necessary to reconstruct the level-set function at each
computational time. This process is called reinitialization. In the present work, the following
partial differential equation is introduced for the reinitialization process(Sussman et al 1997).

od )
e + sign(dp)(|Vd| —1) =0

d(x,0) = do(x) = ¢(x,7) (14)

where 7 is an dummy time which is only used for the reinitialization procedure, sign(dp) = 1 if
do > 0, sign(dy) = —1 if dy < 0, and sign(0) = 0.

The idea of this equation is that a steady-state solution will be a signed distance function that
has |Vd| = 1 near the interface with the same zero-level-set as the initial function do(x). The value
d(x, T) propagates with speed £1 along the characteristics that are normal to the interface and
converges quickly in a neighborhood of the interface for small time 7. Second order ENO scheme
is used for spatial derivative |Vd| in (14) and explicit Euler scheme is used for time integration.

The width of the neighborhood around the interface can be defined aAh, where > 0, and
it is sufficient to solve (14) up to time aAh. Since the characteristics propagate away from the
interface with speed of unity, the appropriate time step according to the CFL(Courant Friedriches
Lewy) coadition is A7 = Ah/2 ~ Ah/5.

2.2.3 Local level-set method

According to the property of locality of the level-set method, it is sufficient to calculate the level-set
function only in a small narrow band around its zero-level-set for the reinitialization procedure. In
the case of two-dimensional computation, let N X N be the number of grid point and then compu-
tational expense reduces from O(NN?) to O(NN) by the help of the locality property of the level-set
method(Peng et al 1999). In the present paper, a PDE-based local level-set method developed by
Peng et al(1999) is used.

3 Numerical procedure

In the discretization process, all unknown values and physical properties are computed and stored
at the center of the control volume. Interpolation and differentiation are necessary to evaluate the
convective and diffusive fluxes at the cell-face center and each flux can be approximated with the
midpoint rule as follows:

Mass flux: 1he = // p(¢)u-ds =~ [p(¢)u - nleSe (15)

Se
Convective flux: 1heqe (16)
Diffusive flux: [['4(¢)Vg-n]eSe amn
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Cell face

Cell center plane { e-direction }
Figure 2: Non-orthogonal grid element

The hybrid scheme is used to approximate convective fluxes. For the approximations of the
diffusive fluxes, the gradient vector at the cell face can be calculated from the gradients at the cell
centers approximated by using midpoint rule based on the Gauss theorem:

N 1
o = L0 _ [fyai-ds
A A AQ
As seen in Figure 2, when the grid is non-orthogonal, the line connecting points P and E does
not pass through the cell face center e. For the case of a non-orthogonal grid system, Muzafer-
ija(1994) suggested an effective scheme, ‘differed correction method’, to prevent the oscillatory
solutions:

(c=e,w,n,s,....) (18)

=9y m—ae  Oq, 00, o
(v‘])e Ne = (an)e ~ LP,E + [(an)e (8§)e] (19)

Equation (19) can be rewritten by as follows:

O0q qE — QP | (9E' — 9P’ T ~iold
o ~ — V / o
(an )e LP,E + [ LP’,E’ ( q)e ng]
_fE—ap QE"QP+(VQ)E'(I?—I—E)))_(VQ)P'(I?_I'—P>) (20)
LP,E LP/,EI LP/,E'
— X' (V@)E + (1 — Aer)(Va)p} - ] ™

where z_é the unit vector in the £-direction and over bar denotes interpolation from neighbor nodal
values.

ap = qp + (Vq)p - (rp’ — Tp) €2y
At = Jre —rpr| (22)
Irg —rp/|
— == —
T'e — T -n
e = (Fe ZTR) DRI 23)
Ne - Np
rp =Te— [(Te —Tp) - BplHg, if ne~np 24)
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The explicit term at the cell face is used to consider the influence of the cross derivative. On a
non-orthogonal grid system, values of fluid properties at the cell face center can be approximated

as

de = qpr e +gp/(1 — o)
=gede +qp(1 — Ae) + (VQ)E - (TE —TE)Ae + (V@)p - (Tp7 —Tp)(1 — Xe)  (25)

The implicit Euler scheme is used for the time integration as follows:

tnti
/t % + f(q(t),t)}dt =0 — ¢ = ¢ + At[f(tns1, ") (26)

The discretized linear algebraic equation system is solved by using a conjugate gradient method.
SIMPLEC(Semi-Implicit Method for Pressure-Linked Equation Consistent)-algorithm is used for
pressure-velocity coupling on cell-centered grids(van Doormal and Rathby 1984).

4 Results and discussions

As computational example, the steady flow around the Series-60 model(Cp =0.6) with the free
surface is simulated. The z-axis and y-axis are taken to be positive in the downstream direc-
tion and to the starboard side of the hull, respectively. The z-axis is positive upwards. Figure
3 shows a partial view of H-H single structured grid around a Series-60 model and the z-plane
grids at the top plane of the computational domain. The grid resolution is taken higher around
the free surface and near the hull surface. The computational domain in z, y and z-direction
are -1.5< z/L <2.0, 0< y/L <1.0 and -1.0< z/L <0.15, where L(=2.0) is ship length.
The length of the extended computational domain above the waterline is 0.15L. In order to
check the grid dependency of the present numerical solutions, three computational grids with
98x36x48, 120x44 x50, 140x66x50 C'Vg are employed. Computations are done at a Froude
number F,,(=Uq/+/gL)=0.316 and Reynolds number R, (=UsLp/p)=4x 106, where Uy is ship
speed.
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Figure 3: Partial view of a H-H type single structured grid around a Series-60 model and
z-plane grids at the top of the computational domain

43



L-R. Park and H.-H. Chun: Analysis of Viscous Free Surface Flow ...

4.1 Boundary conditions

No slip condition is used at the hull boundary and symmetry boundary condition is applied at the
center plane, side plane and bottom of the flow domain. The natural Neumann boundary condition
for the pressure 1s implied at all boundaries of the flow domain. Wall function technique(Launder
and Spalding 1974) is used for the turbulence flow boundary conditions near the wall surface. The
inflow boundary conditions for the velocity and turbulence equations are following conditions:

’U,l‘:Uo, UQZO, U3'—‘0
k=kin, €=c¢mn (27)

where the constants K, and &;,, have some small positive value.

Computations are started at the full speed Uy without any flow acceleration. At the outflow,
the extrapolation boundary conditions for the velocities and free surface height are used and any
quantity is not prescribed and no wave damping area exits.

The dynamic free surface boundary condition is indirectly satisfied with the solutions of the
level-set form governing equations and the correct kinematic condition is obtained from the solu-

tion of (8).

4.2 Computational results

Figure 4 shows the convergence history of the residuals of the pressure correction and turbulence
kinetic energy equation for the three grids, where the time segments for coarse and medium grids
have the same size of At=0.005 while At=0.0025 is used for the fine grid. It can be seen that for
all cases, the residuals decrease to about 1x 107 after nondimensional time #'(=tUp/L)=5.

In Figure 5, the time histories of the pressure and friction resistance coefficient for the three
grids are plotted as function of the nondimensional time. It can be seen that in all cases, the pres-
sure and friction resistance coefficients converge, showing that the friction resistance converges
faster than the pressure resistance.

Table 2 shows a comparison of computed resistance coefficients and experimental results. In
the experiment by Toda et al(1991), only the total resistance was measured and the friction resis-
tance coefficient is calculated by the ITTC 1957 correlation line. Then, the sum of the pressure
drag and wave resistance coefficient is obtained by subtracting the friction resistance coefficient

: —————— Hix36x48 CV5 (Ar=0.005) I SOx36x 48 CV5 (= 0.005)
S 10°F crvirerne 120044xS0CVs (=000 R 107k eeeveeea. 120x44x50 CVE (Ar= 0.005)
i 140%66x50 CVx (Am 0.003)] - 140x66x 50 CV5 (Ar=0.003)
S

H ¥

L}

H it

8 <

B, ~

3 3

3 3

g &

3 s )
10 73 3 T3 0 10 73 3 73 T

Time (U, /L) Time (2U,/L)

Figure 4: Convergence history of residuals of pressure correction and turbulence kinetic
energy equations for three different grids at F,,=0.316, R,,=4.0x 10%
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Figure 5: Convergence history of the pressure and friction resistance coefficients for three
different grids at F},=0.316, R,,=4.0x 105

from the measured total resistance coefficient. Therefore, the comparison of the computed and
measured total resistance coefficient is more reliable. It can be seen from the Table 2 that the
present computational results for the three grids show good correlation with the experiment. The
differences in the results computed by three grids are very small and this is due to the fact that
the coarse grid(98x36x48) among the three grids is relatively fine enough for the flow analysis
of a simple hull form such as Series 60. In addition, despite of the use of H-H type single struc-
tured grid, the good agreement between the computation and experiment is also due to the simple
geometry.

Figure 6 shows the pressure distributions on the hull of Series-60 model and on the center
plane for the fine grid case. The pressure distribution includes the effect of the free surface and
shows reasonably converged solution that is similar to other published results(Hino 1994, Tahara
and Stern 1996). The pressure lines are concentrated at the free surface boundary and it seems to
make one thick line. These pressure lines concentrated around the free surface indicate the use of
the interface thickness through which the density and viscosity of the air and water vary according
to (13). So this region decreases or increases according to the value of the interface thickness.

Figure 7 shows local level-set function tubes, well converged, along the hull surface and at the
fore and after hull, where the thick black line is zero level-set and the free surface plane. When a
level-set method is used for capturing the free surface, the reinitialization procedure, described in
section 2.2.2, is important to keep the value of the level-set gradient unity around the free surface,

Table 2: Comparison of resistance coefficients

Cp Cy Cr
Experiment 2437x1073%  3.522x107° 5.959x1073
coarse 0.156x1073 3.695x 1073 5.851x1073
medium 2.223%x 1073 3.603x 1073 5.826x1073
fine 2.336x1073 3.543x 1073 5.879x1073
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Figure 6: Computed pressure distribution around the hull surface and center plane at
F,=0.316, R,=4.0x 105(fine grid used)

at least in the interface thickness defined in the computations. If this procedure may not be kept,
the level-set distributions cannot make a nice and neat uniform appearance and it becomes difficult
to proceed to the next time step in computation process.

Figure 8 shows the computed wave patterns for the three grids and it can be seen that the
fine grid produces a broader and clear wave pattern than those by other two grids. In Figure 9,
the computed wave elevations along the hull surface, F.P./L at -0.5 and A.P./L at 0.5 in z-
axis, for the three grids are compared with the measured result taken by Toda et al(1991). As
the grid becomes finer, the computed result becomes closer to the experiment. It is known from
other published results for the free surface viscous flow analysis around hulls that the computed
wave profiles along the hull surfaces show good correlation with the experimental results, better
correlation than that by potential flow analysis(Kim 2000). However, the divergent wave patterns
in downstream calculated by the most viscous flow solvers are not as clear as the potential flow
solutions are. This may be due to the fact that viscous flow solvers have more or less numerical
diffusion errors through the free surface while proceeding computations. This kind of phenomena
can be also seen in the present computation.

Figure 10 show the comparison between the computed, by the fine grid, and measured lon-
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Figure 7: Computed level-set value distributions on the hull surface of the Series-60 model
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Figure 9: Comparison of wave pro-

Figure 8: Computed wave patterns for files along the hull surface for three
three grids around the Series-60 model grids around the Series-60 model at
at F,=0.316, R,,=4.0x 10° F,=0.316, R,=4.0x10°

gitudinal wave cuts at four transverse positions. The fore and after perpendicular(F.P. /L and
A.P./L) of the model are located at z=-0.5 and 0.5, respectively, in the axis of the figure. In the
near two positions to the hull, y/L=0.0775 and 0.1083, the numerical results show good agree-
ment with the experiment. However, as y/ L increases, the agreement is not so good. The present
numerical method, the level-set method, is one of the free surface capturing methods and in gen-
eral, it requires high grid resolution compared with surface tracking methods to have good wave
pattern that is close to the experiment. In this view, a finer grid seems to be necessary for the
present numerical scheme to enhance its accuracy in predicting the wave pattern. It is worthwhile
mentioning that in general, the front tracking method produces better wave patterns, closer to the
experiment, than the front capturing method. In addition, when a front capturing method like the
present level-set method is used to solve the wave problems, it is important to keep an orthogonal
and uniform appearance grid shape around the free surface region, requiring a lot of endeavors
and a skillful grid generation.

In Figure 11, the computed axial velocity distributions at z:/L=0.5 and z/L=0.7 stations are
plotted together with the experiments. The whole features are similar to the experimental results,
but some discrepancy between the computational and experimental results can be seen. In the
numerical results by Hino(1994) and Kim et al(1999), it is mentioned that more appropriate turbu-
lence models should be used for a good prediction of the wake distribution rear the ship hull and
if sufficient grid points are adapted around the stern region, the grid dependence in the numerical
wake prediction is not so significant.

5 Conclusions

The local level-set approach to solve viscous free surface flows around a hull has been developed.
The level-set method is one of Eulerian methods and this method may be suitable for large de-
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Figure 10: Comparison of longitudinal cut wave profiles at y/L=0.0775, 0.1083, 0.1739
and 0.2067 around the Series-60 model at F,,=0.316, R,,=4.0x 105, fine grid used(Solid
line: calculation, Black circle symbol: Experiment Taken by Toda et al(1991))
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Figure 11: Comparison of axial velocity contours and transverse velocity distributions at
z/L=0.5 & 0.7 at F;,,=0.316, R,,=4.0x 10°

formable free surface problems, but the present computed result for Series-60 model demonstrates
that the level-set method can give reasonable accurate solutions for ship hydrodynamic problems.
More studies are still necessary to validate present work such as real hull forms.
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