• 제목/요약/키워드: Stand-alone wind system

검색결과 77건 처리시간 0.029초

A Study on Photovoltaic/Wind/Diesel Hybrid Power System

  • Cho Jun-Seok;Gho Jae-Seok;Kim Kyung-Hyun;Choe Gyu-Ha;Kim Eung-Sang;Lee Chang-Sung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.698-702
    • /
    • 2001
  • In this paper, to solve the defect of stand-alone type power system in a remote area, a hybrid power system with photovoltaic/wind/diesel generators is proposed. A hybrid power system has a power-balanced controller to equilibrate generation power with a given load demand and which is composed of common DC power system. To execute a power-balanced control, a hybrid power system is assumed that all of power generators have the characteristics of an equivalent current-source and load sharing control technique must be needed at the same time. So this paper describes the algorithm of interactive technique for design of a hybrid power system.

  • PDF

부하특성에 따른 복합발전시스템의 최적용량 설계 및 경제성 분석 (Optimal Capacity Design and Economic Evaluation of Hybrid Generation Systems Based on the Load Characteristics)

  • 임종환
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1103-1109
    • /
    • 2013
  • This paper presents an optimal capacity design of a Hybrid generation system based on economical evaluation for various loads. Optimal sizes of a standalone and grid connection wind- PV hybrid systems were designed for normal, residential and industrial loads using HOMER (Hybrid Optimization Model for Electronic Renewable). Their economical evaluation were performed and compared with a diesel generation system that covers the same loads. The results showed that the stand alone hybrid generation system can be more economical than a diesel generation system for long term operation.

독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구 (The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System)

  • 박세준;윤정필;강병복;윤형상;차인수;임중열
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

6kW 독립형 풍력발전기의 진동 모니터링 및 분석 (Vibration Monitoring and Analysis of a 6kW Wind Stand Alone Turbine Generator)

  • 김석현;남윤수;유능수;이정완;박무열;박해균;김태형
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.81-86
    • /
    • 2005
  • A vibration monitoring system for a small class of wind turbine (W/T) is established and operated. The monitoring system consists of monolithic integrated chip accelerometer for vibration monitoring, anemometers for wind data acquisition and auxiliary sensors for atmospheric data. Using the monitoring system, vibration response of a 6kW W/T generator is investigated. Acceleration data of the W/T tower under various operation condition is acquired in real time using LabVIEW and is remotely transferred from the test site to the laboratory in school by internet. Vibration state of the tower structure is diagnosed within the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site.

  • PDF

정전류·정전압 기능의 1kW급 하이브리드 PCS 설계 (Design of 1kW Hybrid CC/CV PCS)

  • 이재민
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.529-536
    • /
    • 2013
  • 태양광 풍력 하이브리드(Hybrid) 발전 시스템에서는 발전의 주 인자인 태양의 일조량과 바람의 세기 등이 환경적 요인으로 적절하지 못할 경우 충방전 성능의 한계를 가지고 있는 에너지 저장장치인 배터리를 충전하는데 어려움이 발생한다. PCS(power conditioning system)는 태양광 풍력 발전 시스템 운용에 필수적인데 기존의 대부분의 PCS는 중대형 중심이어서 소형 발전에 적합하지 않아 효율이 높고 안정적인 동작을 하는 소형 발전용 PCS 개발이 절실히 요구된다. 본 논문에서는 이러한 문제들을 해결하면서 상용(한전)전력과의 계통연계 및 독립 운영이 가능하고 배터리의 장수명화와 안정화가 가능한 1kW급 하이브리드 CC/CV(constant current/constant voltage)기능을 갖는 PCS를 설계하고 시제품으로 구현하여 그 성능을 검증한다.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

독립형 태양광 가로등 통합제어기 개발 (Development of a stand-alone solar street light controller integrated)

  • 김희철
    • 한국전자통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.641-647
    • /
    • 2014
  • 독립형 태양광발전시스템은 배전선로와 계통 연계되지 않고 독립적으로 운영된다는 장점이 있어 시공설비가 간단하고 비용이 적게 드는 장점이 있지만 MPPT를 포함한 컨버터와 생산된 에너지를 배터리에 저장하기 위한 충전회로 및 배터리 매니징 회로가 요구된다. 기존의 대체에너지분야의 이용은 복합발전의 형태보다는 하나의 발전 형태를 주로 채택하고 있으나 태양광/풍력 복합발전시스템을 최적설계하고 배터리능력을 향상시켜 설치가격을 합리화 할 수 있는 통합형 제어시스템이 필요하다.

독립 운전형 풍력발전시스템 모델링에 관한 연구 (Stand Alone Wind Generation System)

  • 허동오;조영호;서현석;홍도형;김재언
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1104_1105
    • /
    • 2009
  • 본 논문에서는 풍력발전기와 배터리를 이용한 독립형 발전 시스템을 설치 함에 있어 대상지역의 자료를 분석하고 시스템을 구성하고 RPM-sim을 이용하여 WT과 BB의 용량을 설계한 후 시뮬레이션한 결과를 분석하여 대상 지역에 맞는 모델링을 하였는지를 확인하였다.

  • PDF

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.