• Title/Summary/Keyword: Stainless steel 316L

Search Result 281, Processing Time 0.025 seconds

Neutron irradiation of alloy N and 316L stainless steel in contact with a molten chloride salt

  • Ezell, N. Dianne Bull;Raiman, Stephen S.;Kurley, J. Matt;McDuffee, Joel
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.920-926
    • /
    • 2021
  • Capsules containing NaCl-MgCl2 salt with 316L stainless steel or alloy N samples were irradiated in the Ohio State University Research Reactor for 21 nonconsecutive hours. A custom irradiation vessel was designed for this purpose, and details on its design and construction are given. Stainless steel samples that were irradiated during exposure had less corrosive attack than samples exposed to the same conditions without irradiation. Alloy N samples showed no significant effect of irradiation. This work shows a method for conducting in-reactor irradiation-corrosion experiments in static molten salts and presents preliminary data showing that neutron irradiation may decelerate corrosion of alloys in molten chloride salts.

Standard Error Analysis of Creep-Life Prediction Parameters of Type 316LN Stainless Steels (Type 316LN 강의 크리프 수명예측 파라메타의 표준오차 분석)

  • Kim, Woo-Gon;Yoon, Song-Nam;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.19-24
    • /
    • 2004
  • A number of creep data were collected and filed for type 316LN stainless steels through literature survey and experimental data produced in KAERI. Using these data, polynomial equations for predicting creep life were obtained for Larson Miller (L-M), Qrr-Sherby-Dorn (O-S-D) and Manson-Haferd (M-H) parametric methods. In order to find out the suitability for them, the relative standard error (RSE) and standard error of estimate (SEE) values were obtained by statistical process of creep data. The O-S-D parameter showed better fitting to creep-rupture data than the L-M or the M-H parameters, and the three parametric methods did not generate the large difference in the SEE and the RSE values.

  • PDF

On the Fabrication of Porous 316L Stainless Steel by Spark Plasma Sintering (방전플라즈마 소결에 의한 316L 스텐레스강 다공체 재료 제조에 관한 연구)

  • 권영순;김성기;김현식;김환태;최성일;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • SPS(Spark Plasma Sintering ) is known to be an excellent sintering method for porous materials. In the present work an attempt has been made of fabricating porous 316L Stainless steel with good mechanical properties by using controlled SPS process Porosity was 21%~53% at sintering temperature of $600^{\circ}C$~100$0^{\circ}C$ The limit of porosity with available mechanical strength was 30% at given experimental conditions. Porosity can be controlled by manipulating the intial height of the compact by means of the supporter and punch length. The applied pressure can be exerted entirely upon the supporter, giving no influence on the specimen. The specimen is then able to be sintered pressurelessly. In this case porosity could be controlled from 38 to 45% with good mechanical strength at sintering temperature of 90$0^{\circ}C$. As the holding time increased, neck between the particles grew progressively, but shrinkage of the specimen did not occur, implying that the porosity remained constant during the whole sintering process.

A Study of Mechanical Properties for Austenite Stainless Steel of Cryogenic Liquied Nitrogen Storage Tank (초저온 액화질소 저장용기의 오스테나이트계 스테인리스강의 기계적 특성 연구)

  • Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.451-459
    • /
    • 2011
  • Austenitic stainless steels of 300 series are widely used as the structural material due to excellent their cryogenic mechanical properties at cryogenic temperature. There are 316 steel which molybdenum is added to improve the austenitic stability, 316L which carbon contents is reduced to decrease the grain boundary precipitation during welding process, and 316LN which nitrogen is added to improve the austenitic stability and the mechanical strength. But material researches for the welding conditions and mechanical properties at the cryogenic temperature were insufficient so far. In this paper, the characteristics of mechanical properties considering the effect of welding conditions and cryogenic temperature are studied.

The influence of post weld heat treatment on mechanical properties of stainless steel weldment (스테인리스강 용접부의 기계적 성질에 미치는 후열처리의 영향)

  • 한종만;한기형;이은배;허만주;한용섭
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.75-85
    • /
    • 1996
  • In this paper the influence of postweld heat treatment on mechanical properties of SMAW and FCAW stainless steel weldments was examined and the obtained results are as follows ; (1) The amount of $\delta$-ferrite formed by SMAW and FCAW process decreased with increasing holding temperature and time in post weld heat treatment(PWHT), and it was found that the reduced ferrite was transformed into sigma phase after $800^{circ}C{\times}50hr$ PWHT. This sigma phase, even though it was very small, resulted in brittleness of dissimilar weldment between carbon steel and stainless steel in bending test, however in similar weldment between stainless steel and stainless steel was not occured. (2) The chemical composition of sigma phase was measured to 28-30%Cr, 7-9%Mo, 4-6Ni in 316L weldment, and also 35-37%Cr, 0.9-1.0Mo, 6-8%Ni in 309L weldment by EDS analysis.

  • PDF

Study on Prevention of Galvanic Corrosion between Carbon Steel Rivets and Graphite Used in Aluminum Matrix Automobiles (알루미늄 기지 자동차에 쓰이는 탄소강 리벳과 그라파이트간의 갈바닉 부식 방지 연구)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.128-140
    • /
    • 2017
  • Aluminum alloy matrix may be used for manufacturing lighter automobiles. However, galvanic corrosion may occur between the rivet joint combining aluminum alloy matrix and a CFRP (carbon fiber reinforced plastic) laminate. The possibility of galvanic corrosion may be investigated by measuring galvanic couple currents. Two types of galvanic current measuring methods were used. One method is to use potentiodynamic polarization curves and the other is the ZRA (zero resistance ammeter) method. For galvanic corrosion experiments graphite, a major component of CFRP, was used with carbon steel (rivets) and 6061 aluminum alloys. Regardless of carbon steel, Ni deposited carbon steel, and 316L stainless steels we also investigated the possibility of reduction in galvanic corrosion. Results revealed that even though Ni deposited carbon steel or 316L stainless rivet may slightly increase galvanic current density between those and Al matrix, substitute rivets for carbon steel may be considerably useful for reducing overall galvanic corrosion.

Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes (DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가)

  • Shin, G.;Choo, W.;Yoon, J.H.;Yang, S.Y.;Kim, J.H.
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.309-313
    • /
    • 2022
  • In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.

Recovery of Heavy-Metallic Components from a Waste Electro-polishing Solution of 316L Steel by the Solar Cell Electricity (태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수)

  • Kim, Ki-Ho;Jang, Jung-Mok
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Recovery of heavy-metallic component from a waste solution of factory was undertaken by the solar cell electricity. The solution was obtained from an electrolytic etching process of 316L stainless steel. The electrolysis of the solution for recovery of heavy metallic components was made with platinum plated titanium mesh anode and copper plate cathode. Analysis for the solution and electro-winned materials were made by EDS, XRD and SEM. Iron, chromium, and sulfur components were recovered on the cathode from the solution. Result of EDS analysis for the electro-winned materials revealed that some metal oxide were contained in the recovered material. The recovered materials were expected to have metallic form only by the electrolysis, but metal compounds were contained because of weak solar cell power. Nickel and manganese component in the solution doesn't recovered by this electrolysis process, but they made a sludge with phosphoric acid in the solution.

Electrochemical Corrosion Damage Characteristics of Alumium Alloy and Stainless Steel with Sea Water Concentration (알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Park, Il-Cho;Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • 5000 series aluminium alloys and austenitic stainless steels have excellent corrosion resistance and sufficient strength, which are widely used as materials for marine equipment and their parts in the marine environment. The corrosion characteristics of materials are important factors for selecting the appropriate material due to fluid component changes in the estuarine and coastal areas where seawater and fresh water are mixed. Therefore, for 5083 Al alloy, STS304 and STS316L widely used in the marine environment, anodic polarization experiments were performed to compare the corrosion damage characteristics of each material by three kinds of solutions of 100 % tap water, 50 % tap water+50 % natural seawater and 100 % natural seawater. As a result of the anodic polarization experiments, aluminum alloy (5083) caused locally corrosion on the surface in the tap water, and corrosion damage occurred all over the surface when the seawater was included. Stainless steels (STS304 and STS316L) presented almost no corrosion damage in tap water, but they grew pitting corrosion damage with increasing seawater concentration. STS316L showed better corrosion resistance than STS304.

High Temperature Gas Nitriding of Austenitic Stainless Steels (오스테나이트계 스테인리스강의 고온질화)

  • Kong, J.H.;Yoo, D.K.;Park, J.H.;Lee, H.W.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.311-317
    • /
    • 2007
  • This study examined the phase changes, nitride precipitation and variation in mechanical properties of STS 304, STS 321 and STS 316L austenitic stainless steels after high temperature gas nitriding (HTGN) at temperature ranges from $1050^{\circ}C\;to\;1150^{\circ}C$. Fine round type of $Cr_2N$ nitrides were observed in the surface layers of 304 and 316L steels, even more in STS 321. Additionally, square type of TiN was found in STS 321 austenitic matrix too. As a result of many precipitates in the surface layer of the STS 321, it was seen $370{\sim}470Hv$ hardness variation depending on the HTGN treatment conditions, and interior region of austenite represented 150Hv. The surface hardness value of STS 304 and STS 316L showed $255{\sim}320Hv$, respectively. The nitrogen content was shown 0.27, 1.7 and 0.4% respectively at the surface layers of the STS 304, STS 321 and STS 316L. After the HTGN it was shown the improvement of corrosion resistance of the STS 321 and STS 316L compared with solution annealed steels in the solution of 1N $H_2SO_4$ whereas the STS 304 was not.