• Title/Summary/Keyword: Stainless Pipe

Search Result 190, Processing Time 0.023 seconds

Development of Small Size Coriolis Mass Flowmeter (소형 코리올리 질량 유량계의 개발)

  • Lim Ki-Won;Ji Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.497-504
    • /
    • 2006
  • A Coriolis mass flowmeter(CMF), which has U-Shaped unique measurins tube was developed fo. direct mass flow measurement. In order to convert the time difference between two measuring tubes motion into mass flowrate and flow quantity, a signal processing circuit, as a part of CMF, was also developed. The CMF was designed as the 15 mm nominal diameter of pipe connection and the 8 mm stainless steel(sus 316) pipe was used for measuring tube. To maximize the flow signal(time difference) from the measuring tubes, the natural frequency of measuring tube was adjusted as 220 Hz, which is same as the frequency of exciter. The maximum displacement at the end of the measuring tube was measured as 0.05 mm and the maximum time difference between two measuring tubes was observed as $20{\mu}s$, which was proper for discrimination and measuring range of CMF. The developed CMF was tested against the gravimetric flowmeter calibrator in the range of 3 kg/min and 30 kg/min. The results showed that the CMF has good linearity and repeatability in the tested flow range. Large size of CMF base on the current study experience will be developed.

Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution - (배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 -)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.

Development of Nutrient Solution Cooling System in Hydroponic Greenhouse (수경재배 온실의 양액냉각시스템 개발)

  • 남상운;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

A Study on the Plastic deformation Absorption Characteristics of Aluminum-Polyethylene Composite Structure Sprinkler Pipe (알루미늄 합성수지 복합 구조 스프링클러 파이프의 변위 흡수 특성 연구)

  • Kim, Jun-Gon;Kim, Kwang-Beom;Noh, Sung-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.426-433
    • /
    • 2019
  • After an earthquake, fire and gas explosions are more likely to cause more casualties in cities with many apartment buildings and large complex buildings. In order to prevent this, seismic design is necessary for the fire protection sprinkler system. However, most systems currently use stainless-steel pipes, although synthetic resin pipes are used in some special places. These materials are susceptible to vibration and earthquakes. This study evaluated the displacement absorption flexibility of polyethylene (PE) and aluminum (Al) multi-layered composite pipes to increase the seismic performance in a vibration environment and during earthquakes. The seismic performance was compared with that of a stainless-steel and PE pipes. The seismic characteristics can be measured by measuring the amount and extent of vibration transmitted by the sprinkler pipe. This method can be used to judge the seismic characteristics to attenuate the vibration during an earthquake. The seismic characteristics of the pipe were verified by comparing the logarithmic attenuation rate to the initial response displacement of the vibration generated by the transverse vibration measurement method.

Spot Heating Technology Development for Strawberry Cultivated in a Greenhouse by Using Hot Water Pipe (온수배관을 이용한 시설딸기 부분난방기술 개발)

  • Moon, Jongpil;Kang, Geum-Choon;Kwon, Jin-Kyung;Paek, Yee;Lee, Tae Seok;Oh, Sung-Sik;Nam, Myeong-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.71-79
    • /
    • 2016
  • The effects of spot heating for growing the strawberry cultivated in a plastic greenhouse during the winter that were estimated in Nonsan strawberry experiment station located in Chungnam. The temperature of water for heating was controlled by a electric hot water boiler and kept at the range of $22{\sim}24^{\circ}C$. Heating pipes were set up in root zone for root zone heating and very close to crown for crown heating. Spot heating effects were estimated by applying spot heating system in three test factors of heating root zone, crown only and crown plus root zone. The material for crown heating pipe was white low density polyethylene and the nominal diameter of that pipe was 16 mm. The material for root zone heating pipe was flexible stainless steel and the nominal diameter of that pipe was 15A. The flow rate of heating water circulation was 480 L/h and water circulation lasted for all day long. Temperatures, harvest yield by test beds were surveyed from Nov. 10, 2013 to Apr. 29, 2014. The temperature of crown spot for crown heating bed was at the range of $13.0{\sim}17.0^{\circ}C$ during the night and that of crown spot in control bed was at the range of $8.0{\sim}14.0^{\circ}C$. Also, the temperature of root zone for root zone heating bed was at the range of $18{\sim}21.0^{\circ}C$ and that of root zone in control bed was at the range of $13.0{\sim}15.0^{\circ}C$. The cumulative yield growth rate in earlier harvest period (from Dec. 20 to Mar. 15) of crown heating bed was 43% compared with that of control bed and the cumulative yield of crown plus root zone heating bed was 39 % and that of root zone heating bed was 39 %.

Mis-Match Limit Load Analyses and Fracture Mechanics Assessment for Welded Pipe with Circumferential Crack at the Center of Weldment (용접부 중앙에 원주방향균열이 있는 배관에 대한 강도불일치 한계하중 해석 및 파괴역학 평가)

  • Song, Tae-Kwang;Jeon, Jun-Young;Shim, Kwang-Bo;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, limit load analyses and fracture mechanics analyses were conducted via finite element analyses for the welded pipe with circumferential crack at the center of the weldment. Systematic changes for strength mismatch ratio, width of weldment, crack shape and thickness ratio of the pipe were considered to provide strength mismatch limit load. And J-integral calculations based on reference stress method were conducted for two materials, stainless steel and ferritic steel. Reference stress defined by provided strength mis-match limit load gives much more accurate J-integral.

Development of Liquid Density Measurement Sensor Using the Natural Frequency of a Pipe (파이프의 고유진동수를 이용한 액체밀도측정 센서개발)

  • Chang, Kyung-Ho;Lee, Yong-Jae;Kim, Kwang-Pyo;Ahn, Byung-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.9-14
    • /
    • 1995
  • For the development of liquid density measuring sensor using the natural frequency of a pipe, its principle and construction method were described. The stainless steel pipe, which has length of 32 cm, inside diameter of 2.3 cm and outside diameter of 2.5 cm, was used for the sensor. The exciting coil and the photo sensor were used to excite and to pick-up it, and the feedback circuit was designed to continue its vibrating. The natural frequency was consistent with the result of the spectrum analysis. It had a linearity of 0.0027 % and a sensitivity of 0.032 % in liquid density range from $0.8\;g/cm^{3}$ to $1.4\;g/cm^{3}$ and its frequency variation ratio was 0.024 $%/^{\circ}C$ in temperature range from $10^{\circ}C$ to $35^{\circ}C$.

  • PDF

Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine (이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성)

  • Kim, Seong-Jong;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

Effect of Impurities on Streaming Electrification in Transformer Oil (변압기 절연유의 유동대전현상에 미치는 불순물의 영향)

  • Cho, Moon-Ho;Kweon, Dong-Jin;Kwak, Hee-Ro;Kim, Du-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.931-933
    • /
    • 1992
  • The static charges generated at the interface between the insulating oil and the solid materials, can be affected by impurities such as moisture. This paper investigated the charging tendency of clean oil and the oil with moisture in stainless steel pipe. The experimental results show that static electrification of the oil with moisture is smaller than that of the clean oil, and the oil is positively charged.

  • PDF