• Title/Summary/Keyword: Stainless

Search Result 3,990, Processing Time 0.034 seconds

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel (스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정)

  • Kim, Sang-Kyu;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

Prevention of Crevice Corrosion of STS 304 Stainless Steel by a Mg-alloy Galvanic Anode

  • Lim, U.J.;Yun, B.D.;Kim, J.J.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.90-93
    • /
    • 2006
  • Prevention of crevice corrosion was studied for STS 304 stainless steel using a Mg-alloy galvanic anode in solutions with various specific resistivity. The crevice corrosion and corrosion protection characteristics of the steel was investigated by the electrochemical polarization and galvanic corrosion tests. Experimental results show that the crevice corrosion of STS 304 stainless steel does not occur in solutions of high specific resistivity, but it occurs in solutions of low specific resistivity like in solutions with resistivities of 30, 60 and $115{\Omega}{\cdot}m$. With decreasing specific resistivity of the solution, the electrode potential of STS 304 stainless steel in the crevice is lowered. The potential of STS 304 stainless steel in the crevice after coupling is cathodically polarized more by decreasing specific resistivity indicating that the crevice corrosion of STS 304 stainless steel is prevented by the Mg-alloy galvanic anode.

Development of High Performance Stainless Steel Powders

  • Schade, Christopher;Schaberl, John;Narasimhan, Kalathur S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.169-170
    • /
    • 2006
  • Advanced melting technology is now being employed in the manufacture of stainless steel powders. The new process currently includes electric arc furnace (EAF) technology in concert with Argon Oxygen Decarburization (AOD), High Performance Atomizing (HPA) and hydrogen annealing. The new high performance-processing route has allowed the more consistent production of existing products, and has allowed enhanced properties, such as improved green strength and green density. This paper will review these processing changes along with the potential new products that are being developed utilizing this technology. These include high strength stainless steels such as duplex and dual phase as well as stainless steel powders used in high temperature applications such as diesel filters and fuel cells.

  • PDF

Cavitation-erosion Resistance of Stabilized Stainless Steel with Niobium Addition in Sea Water Environment (해수 내 캐비테이션-침식 저항성에 미치는 스테인리스강의 Nb 첨가의 영향)

  • Choi, Yong-Won;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.274-279
    • /
    • 2016
  • Stainless steel is widely used in various industries due to its excellent anti-corrosion characteristics. However, if the stainless steel is exposed to high speed fluid flow and chloride ion in the marine environment, corrosion and cavitation damage occurred on the surface easily. Therefore, to prevent these problems, stabilzed stainless steel is applied to offshore and shipbuilding industries. In this study, stabilized stainless steel specimen was made by 19%Cr-9%Ni with different Nb contents (0.29%, 0.46% and 0.71%). And then, their cavitation characteristics were investigated. As a result, the characteristics of cavitation resistance of stainless steel could be improved by increasing Nb contents.

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ODS FERRITIC STAINLESS STEELS FOR HIGH TEMPERATURE SERVICE APPLICATIONS

  • SANGHOON NOH;SUK HOON KANG;TAE KYU KIM
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.921-924
    • /
    • 2019
  • In this study, ODS ferritic stainless steels were fabricated using a commercial alloy powder, and their microstructures and mechanical properties were studied to develop the advanced structural materials for high temperature service applications. Mechanical alloying and uniaxial hot pressing processes were employed to produce the ODS ferritic stainless steels. It was revealed that oxide particles in the ODS stainless steels were composed of Y-Si-O, Y-Ti-Si-O, and Y-Hf-Si-O complex oxides were observed depending on minor alloying elements, Ti and Hf. The ODS ferritic stainless steel with a Hf addition presented ultra-fine grains with uniform distributions of fine complex oxide particles which located in grains and on the grain boundaries. These favorable microstructures led to superior tensile properties than commercial stainless steel and ODS ferritic steel with Ti addition at elevated temperature.

Heat Treatment Effect on Physical Properties of Stainless Steel / Inconel Bonded by Directed Energy Deposition

  • Yeong Seong Eom;Kyung Tae Kim;Dong Won Kim;Ji Hun Yu;Chul Yong Sim;Seung Jun An;Yong-Ha Park;Injoon Son
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1049-1054
    • /
    • 2021
  • In this study, stainless steel 316L and Inconel 625 alloy powders were additively manufactured by using directed energy deposition process. And heat treatment effect on hardness and microstructures of the bonded stainless steel 316L/Inconel 625 sample was investigated. The microstructures shows there are no secondary phases and big inclusions near interfacial region between stainless steel 316L and Inconel 625 except several small cracks. The results of TEM and Vickers Hardness show the interfacial area have a few tens of micrometers in thickness. Interestingly, as the heat treatment temperature increases, the cracks in the stainless steel region does not change in morphology while both hardness values of stainless steel 316L and Inconel 625 decrease. These results can be used for designing pipes and valves with surface treatment of Inconel material based on stainless steel 316L material using the directed energy deposition.

A COMPARISON OF THE BOND STRENGTHS BETWEEN SOME CEMENTS AND STAINLESS STEEL MATERIAL (Stainless steel crown을 위한 수종 시멘트의 접착력 비교)

  • Kim, Hong-Ryoul;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.528-537
    • /
    • 1999
  • The purpose of this study was to analyze and compare the bond strengths between stainless steel plate and zinc phosphate cement, polycarboxylate cement and glass ionomer cement, which are frequently used for cementation of stainless steel crowns. Three cementing materials were glued to the poles standing above stainless steel plate, bovine teeth, light cured glass ionomer restorative material and amalgam. And the tensile bond strengths between them were measured with universal testing machine and the results were statistically processed using ANOVA and Student t-test. The obtained results were as follows : 1. On stainless steel plate, glass ionomer cement and polycarboxylate cement showed higher tensile bond strengths compared to zinc phosphate cement, with no significant difference between the former two. 2. On the surface of bovine teeth and glass ionomer restorative material, glass ionomer cement showed highest bond strength, followed by polycarboxylate cement and zinc phosphate cement in order. 3. For amalgam restoration, polycarboxylate cement and glass ionomer cement showed higher tensile bond strengths than zinc phosphate cement, with no significant difference between the former two.

  • PDF

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).