• 제목/요약/키워드: Stacking Faults

검색결과 90건 처리시간 0.028초

HRTEM을 이용한 비극성 GaN의 구조적 특성 분석 (Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy)

  • 공보현;김동찬;김영이;안철현;한원석;최미경;배영숙;우창호;조형균;문진영;이호성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

고효율 LED 제작을 위한 비,반극성 GaN의 성장 및 결함 분석

  • 공보현;김동찬;김영이;안철현;배영숙;우창호;서동규;남옥현;유근호;장종진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.172-172
    • /
    • 2009
  • In this study, we presented comparative discrimination methods to identify various line and planar defects observed in nonpolar a-GaN epilayers on r-sapphire substrates. Unlike the case of conventional c-GaN, which is dominated by perfect threading dislocations, systematic identification of undistinguishable defects using transmission electron microscopy (TEM) is necessary to suppress the propagation of defects in nonpolar GaN epilayers. Cross-sectional TEM images near the [0001] zone axis revealed that perfect mixed and pure screw type dislocations are visible, while pure edge, partial dislocations, and basal stacking faults (BSFs) are not discernible. In tilted cross-sectional TEM images along the [$1\bar{2}10$] zone axis, the dominant defects were BSFs and partial dislocations for the $g=10\bar{1}0$ and 0002 two-beam images, respectively. From plan view TEM images taken along the [$11\bar{2}0$] axis, it was found that the dominantpartial and perfect dislocations were Frank-Shockley with b=${\pm}1/6$<$20\bar{2}3$> and mixed type without an 1 component including b=${\pm}1/3$<$1\bar{2}10$> and ${\pm}1/3$<$\bar{2}110$>, respectively. Prismatic stacking faults were observed as inclined line contrast near the [0001] zone axis and were visible as band contrast in the two-beam images along the [$1\bar{2}10$] and [$11\bar{2}0$] zone axes.

  • PDF

Fe-Mn 방진합금을 적용한 발전소 격납용기 살수펌프의 소음$\cdot$진동 저감효과에 관한 연구 (Application of Fe-Mn High Damping Alloys for Reduction of Noise and Vibration in Power Plants)

  • 백승한
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.720-729
    • /
    • 1999
  • Coventional methods for reducing vibration in engineering designs (i.e. by stifferning or detuning) may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. Although several non ferrous damping alloys have been developed, none of those materials are applied in any industrial factor due largely to high production cost. To meet these requirement, we have developed a new Fe-Mn high damping alloy. In previous studies, we have reported that an Fe-17%Mn alloy exhibits the highest damping capacity(Specific Damping Capacity:SDC, 30%) among Fe-Mn binary system, and proposed that the boundaries of various types such as $\varepsilon$-martensite variant boundaries, stacking faults in $\varepsilon$-martensite, stacking faults in austenitic and ${\gamma}$$\gamma /\varepsilon$ interfaces give rise to a high damping capacity. The Fe-17%Mn alloy also has advantages of good mechanical properties(T.S. 70 kg/nm$^2$ and low cost over other damping alloys(1/4 times the cost of non-ferrous damping alloy). Thus, the Fe-17%Mn high damping alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components. In this paper, the overall properties of the Fe-17%Mn high damping alloy is introduced, and its applicability to containment spray pump in the power plant is discussed.

  • PDF

Effects of electron beam irradiation on the superconducting properties of YBCO thin films

  • Lee, Y.J.;Choi, J.H.;Jun, B.H.;Joo, J.;Kim, C.S.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권4호
    • /
    • pp.15-20
    • /
    • 2016
  • The effects of electron beam (EB) irradiation on the superconducting critical temperature ($T_c$) and critical current density ($J_c$) of YBCO films were studied. The YBCO thin films were irradiated using a KAERI EB accelerator with an energy of 0.2 MeV and a dose of $10^{15}-10^{16}e/cm^2$. A small $T_c$ decrease and a broad superconducting transition were observed as the EB dose increased. The value of $J_cs$ (at 20 K, 50 K and 70 K) increased at doses of $7.5{\times}10^{15}$ and $2.2{\times}10^{16}e/cm^2$. However, $J_cs$ decreased as the dose increased further. The X-ray diffraction (XRD) analysis showed that the c axis of YBCO was elongated and the full width at half maximum (FWHM) increased as the dose increased, which is strong evidence of the atomic displacement by EB irradiation. The transmission electron microscopy (TEM) showed that the amorphous layer formed in the vicinity of the surfaces of the irradiated films. The amorphous phase was often present as an isolated form in the interior of the films. In addition to the formation of the amorphous phase, many striations running along the a-b direction of YBCO were observed. The high magnification lattice image showed that the striations were stacking faults. The enhancement of $J_c$ by EB irradiation is likely to be due to the lattice distortion and the formation of defects such as vacancies and stacking faults. The decrease in $J_c$ at a high EB dose is attributed to the extension of the amorphous region of a non-superconducting phase.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • 공보현;조형균;송근만;윤대호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

고에너지 P이온 주입한 실리콘에 형성된 격자 결함에 관한 고분해능 투과전자현미경 연구 (A High-Resolution Transmission Electron Microscopy Study on the Lattice Defects Formed in the High Energy P Ion Implanted Silicon)

  • 장기완;이정용;조남훈;노재상
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1377-1382
    • /
    • 1995
  • A high-resolution transmission electron microscopy study on the lattice defects formed in the high energy P ion implanted silicon was carried out on an atomic level. Results show that Lomer dislocations, 60$^{\circ}$perfect dislocations, 60$^{\circ}$ dislocation dipole and extrinsic stacking fault formed in the near Rp of as-implanted specimen. In the annelaed specimens, interstitial Frank loops, 60$^{\circ}$perfect disolations, 60$^{\circ}$dislocation dipoles, stacking faults, precipitates, perfect dislocation loops and <112> rodlike defects existed exclusively near in the Rp with various annealing temperature and time. From these results, it is concluded that extended secondary defects as well as the point defect clusters could be formed without annealing. Even at low temperature annealing such as 55$0^{\circ}C$, small interstitial Frank loops could be formed and precipitates were also formed by $700^{\circ}C$ annealing. The defect band annealed at 100$0^{\circ}C$ for 1 hr could be divided into two regions depending on the distribution of the secondary defects.

  • PDF

ULSI용 Electroplating Cu 박막의 미세조직 연구 (Microstructural investigation of the electroplating Cu thin films for ULSI application)

  • 박윤창;송세안;윤중림;김영욱
    • 한국진공학회지
    • /
    • 제9권3호
    • /
    • pp.267-272
    • /
    • 2000
  • electroplating(EP)법을 이용하여 ULSI용 Cu 박막을 제조하였다. seed Cu는 sputtering으로 증착하였으며, 확산방지막으로 TaN를 사용하였다. 제작된 EP Cu 박막은 seed Cu의 영향으로 열처리 조건에 관계없이 Cu(111)방향으로 강하게 우선 배향 하였다. 열처리 온도와 시간이 증가함에 따라 Cu박막의 미세조직이 non-columnar structure에서 약 2배 이상 결정립 성장하여 columnar structure로 바뀌었으며, 또한 as-deposit시 관찰되었던 stacking fault, twin, dislocation들이 상당히 줄어드는 것이 관찰되었다. Cu의 확산에 의하여 생기는 copper-silicide는 관찰할 수 없었으며, 이것은 두께 45nm의 TaN막이 $450^{\circ}C$, 30분 열처리시 확산방지막으로 충분한 역할을 한 것으로 판단된다. Cu(111)우선 배향과 열처리에 의한 결정립 성장 및 defect감소는 Cu 박막의 결정립계에서 발생하는 electromigration 현상을 상당히 줄일 수 있을 것으로 판단된다.

  • PDF

일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성 (Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC)

  • 최백규;도정현;정중은;석우영;이유화;김인수
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.505-515
    • /
    • 2021
  • 일방향응고로 제조된 니켈기 초내열합금 CM247LC의 다양한 온도 및 응력조건에서 크리프 특성에 대해 고찰하였다. 열처리 후 일부 공정조직이 남아 있었으며 비교적 균일한 육면체의 γ'이 수지상 내부와 수지상간 영역에서 관찰되었다. 상대적 저온인 750℃의 고응력 크리프 영역에서는 1차 크리프 동안 많은 변형이 발생하였으나 고온으로 갈수록 3차 크리프 구간이 크리프 변형시간의 대부분을 차지함을 알 수 있었다. 저온 고응력에서는 부분 전위가 γ'으로 진입하며 적층결함을 γ'내에 생성시켰으며 초기 크리프 변형속도가 증가하는 부분이 있었으나 850℃ 이상의 온도에서는 γ' 내부에서 적층결함이 관찰되지 않았으며 이는 적층결함에너지의 온도의존성 때문인 것으로 판단된다. 고온이어서 확산속도가 빠른 950℃와 1000℃에서는 γ'의 래프팅이 관찰되었다. 온도가 좀 더 낮은 850℃에서는 변형기구가 응력에 따라 다르게 나타나서 상대적으로 크리프 시간이 긴 저응력에서만 래프팅이 관찰되었다.

Al-Cu-Mg 합금에 있어서의 2차 결함조직 (The Secondary Defect Structure in Al-Cu-Mg Alloy)

  • 조현기;우기도
    • Applied Microscopy
    • /
    • 제16권2호
    • /
    • pp.14-24
    • /
    • 1986
  • The interrelation of secondary defects, intermediate S' phase and aging condition in Al-2.0 wt% Cu-1.1 wt% Mg alloy is studied by transmission electron microscope. The results obtained in this study are as follows. 1. High density of dislocation loops, helices and stacking faults are observed in this specimen with aging treatment. 2. The number of dislocation loops and the width of loop free zone (LFZ) are increased with aging time. 3. The intermediate S' phase precipitates and grows on the dislocations and secondary defects. 4. The misfit dislocations are formed around intermediate S' phase. 5. It is thought that the helices appear to be produced by the climb of screw dislocations, while the dislocation loops appear to be formed both by condensation of vacancies into collapsed discs and by interaction of helices with screw of opposite sign.

  • PDF

모재표면오건에 따른 TiN 박막의 Morphology변화 (The Behavior of TiN Thin Film Growth According to Substrate Surface Conditions in PECVD Process)

  • 노경준;이정일
    • 한국결정학회지
    • /
    • 제3권1호
    • /
    • pp.53-66
    • /
    • 1992
  • Extensive research has been perform성 on the property-microstructure-process condition relations of thin films. The various proposed models are mainly based on physical vapor deposition processes. Especially the study on the surface condition of substrates in Zone 1 with low surface mobility has not been sufficient. In this study, therefore, we discussed the mochological changes of TiN films deposited by plusma enhanced chemical vapor deposition process with substrates of different composition and micro-rorghness, and compared it with the Structure Zone Model. We could find out that the growth rate of films increased and micro-grain size decreased with the increase in micro-roughness, but it does not improve the mechanical properties because of many imperfections like voids, micro-cracks, stacking faults, etc. This means that, in these deposition conditions, the increase in shadowing diffect is more effective than the increase in nucleation sites on the growth of films due to the increase in substrate roughness.

  • PDF