• Title/Summary/Keyword: Stacking

Search Result 1,457, Processing Time 0.026 seconds

Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms (유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계)

  • Yoon, I.S.;Choi, H.S.;Kim, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

The Relationship between Fiber Stacking Angle and Delamination Growth of the Hybrid Composite Material on an Aircraft Main Wing (항공기 주익용 하이브리드 복합재의 섬유배향각과 층간분리 성장과의 관계)

  • 송삼홍;김철웅;김태수;황진우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1402-1405
    • /
    • 2003
  • The main object of this study was evaluated by the delamination damage for fiber stacking angle. Therefore, this work need to compare the shape of delamination for a different fiber stacking angie. So this study uses a method of fatigue test which was created [0]$_2$,[+45]$_2$[90]$_2$. The extension of the delamination zone formed between aluminium alloy and glass fiber-adhesive layer were measured by an ultrasonic C-scan image. As a result, the shapes of delamination zone don't depend upon the crack propagation. We could know that the delamination zone grew interaction between stress flow of fiber layer and crack driving force. Hence, the existing study were applied to the stress transfer, fiber bridging effect, delaminantion growth rate should need to the develop useful factor because of change of fiber stacking angle.

  • PDF

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

A Container Stacking System for the Mobile Harbor (모바일하버에 적용할 컨테이너 적재 유도 시스템)

  • Kim, In-Su;Kim, Kwang-Hoon;Son, Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.672-678
    • /
    • 2010
  • The purpose of this study is to develop a stacking guidance system (SGS) of containers in the mobile harbor (MH). A mobile harbor is a floating structure especially designed for loading and unloading containers from and to a large container ship. A novel stacking guidance system was proposed for unloading the container in an effective way against possible vibrations of the floating body. The guidance system works as an aid for loading containers with a wider opening for easier stacking of a container into a moving storage cell due to waves. In order to determine the most effective inclination angle of the cell-guide, this study performed the dynamic analysis of the SGS equipped in the MH subject to fluctuations of the sea. The motions of the guidance system and a container loaded were calculated using ADAMS. The simulation results of the contact force between the two rigid bodies showed that a desirable angle of the cell-guide should be around 20 degrees from the vertical. This proposed SGS can considerably reduce the loading and unloading time, and will enhance the performance of the MH.

A Study on Stability of Ag sheathed Bi-2229 tape and Cylindrical Stacking Conductor for HTS Cable (고온초전도 케이블용 은시스 Bi-2223 테이프 및 적층 도체의 안정성연구)

  • Lee, B.S.;Kim, Y.S.;Jang, H.M.;Back, S.M.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1554-1556
    • /
    • 2000
  • Normal zone propagation(NZP) characteristics were investigated on Ag sheathed multi filamentary Bi-2223 tape and cylindrical stacking conductor. The critical current($I_c$) of Ag sheathed Bi-2223 tape and cylindrical stacking conductor were 12 A, 63 A at 77 K, 0 T. Normal zone propagation(NZP) experiments with tape were conducted with refrigerator in temperature from 45 K to 77 K, 0 T. Cylindrical stacking conductor was molding with epoxy and experiments were conducted with adiabatic condition in $LN_2$. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. Temperature ($T_1$) of tape with distance of 0.5 cm from heater was strongly climbed up to 95K and slowly decreased. NZP velocities of cylindrical stacking conductor were 1.9-2.4 cm/sec in $LN_2$.

  • PDF

Strength Analysis of Rear Upright Laminated with Carbon Fiber Composite for Leisure Purposed Small Electric Car (카본섬유 복합재 라미네이트를 적용한 레저용 소형 전기차량의 후륜 업라이트의 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2019
  • Carbon fiber composite laminate has been widely used in the area of sports applications such as race car, golf club, fishing rods, yacht. In this study, carbon fiber composite laminate was used in the rear upright of leisure purposed small size single-seat electric race car to reduce its unsprung mass of suspension system. The focus of this research is to investigate in finding optimal stacking lay-up of rear upright laminated with carbon fiber composite in the early design phase. Forces transferred from circuit road to rear upright were estimated through MBD(Multi-Body Dynamics)model of the rear suspension geometry. To evaluate the strength of the rear upright laminated with carbon fiber composite which generally behaves in an anisotropic or orthotropic manner, FEA(Finite Element Analysis) model suitable for composite materials was built followed by its strength was evaluated depending on different stacking lay-up. The result showed that Symmetric stacking lay-up [$45^{\circ}/-45^{\circ}/90^{\circ}/0^{\circ}$]s for frontal area and symmetric stacking lay-up with 1mm aluminum core [$45^{\circ}/-45^{\circ}/90^{\circ}/Core$]s for rear area were most suitable of 16 lay-up cases from the side of both strength based on Tasi-wu failure index and weight.

Optimization of stacking sequence for composite golf club shafts (복합재료 골프샤프트의 적층최적화)

  • Kim, Moo-Sun;Han, Dong-Chul;Kim, Seon-Jin;Lee, Woo-Il
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study presents a methodology for optimization of static characteristics of golf club shafts. Stacking sequence for the optimal composite shaft performance is searched. A new objective function is defined for the simultaneous optimization of flexural and torsional stiffnesses. Classical lamination theory is used for the static analysis. As the optimization tool, genetic algorithm is applied with the stacking sequence as design. variables. With the optimal stacking sequence, dynamic characteristics of the shaft is also studied.

Layup Optimization for Composite Laminates with Discrete Ply Angles (이산 섬유 배열각을 이용한 복합재료 적층 평판의 최적 설계)

  • Kim, Tae-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles is used for optimization of composite laminated plates. To handle discrete ply angles, the branch and bound method is modified. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region, which shows the algorithm can be effectively used for layup optimization of composite laminates..

  • PDF

Optimum Design of Multi-Stacking Current Lead Using HTS Tapes (고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계)

  • 설승윤;김민수;나필선
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

Optimization of a Block Stacking Storage Model for a Single Product using (s, S) Inventory Policy ((s, S) 재고정책하에서 단일제품의 확률적 Block Stacking 저장모형의 최적화)

  • Yang, Moon-Hee;Chang, Kyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.137-144
    • /
    • 1998
  • Block stacking, which involves the storage of unit loads in stacks within storage rows, is typically used in traditional warehouses to achieve a high space utilization at a low investment cost. In this paper, assuming that the demand size from a customer is an i.i.d. random variable, we develop a probabilistic block stacking storage model and its algorithm for a singles product, which minimizes the time-overage floor space requirement under an (s, S) inventory policy and the violation of the FIFO lot rotation rule only in a single partially-occupied row.

  • PDF