• Title/Summary/Keyword: Stack-cell

Search Result 587, Processing Time 0.033 seconds

A study on the comparison of the performance of a heat pump system with air and water heat sources (공기열원 및 수열원을 이용한 열펌프 시스템의 성능특성에 관한 연구)

  • Ko, Won-Bin;Park, Youn-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.563-568
    • /
    • 2016
  • In this study, experiments were conducted to evaluate the performance of a heat pump system. A heat pump system with an air as heat source is adapted as reference. The developed system uses a plate heat exchanger an evaporator to absorb heat from a stack of fuel cell driven electric vehicles. Hence, the system functions as a water source heat pump system. The results indicated that the; power consumption increased with the rotational speed of the compressor. A system performance($COP_h$) of 2.03 at an electronic expansion valve(EEV) openings of 25% and a compressor speed of 1200 rpm was observed in the reference system. However, at the same compressor speed, the $COP_h$ of the water source heat pump system corresponded to 9.42 at an EEV openings of 75%. It was found that the water source heat pump system exhibited the highest performance at a water temperature of $50^{\circ}C$.

Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC (크롬질화처리한 저탄소강의 고분자 전해질 연료전지 분리판으로서의 표면특성)

  • Choi, Chang-Yong;Kang, Nam-Hyun;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • Separator of stack in polymer electrolyte membrane fuel cell (PEMFC) is high cost and heavy. If we make it low cost and lighter, it will have a great ripple. In this study, low carbon steel is used as base metal of separator because the cost of low carbon steel is very cheaper commercial metal material than stainless steels, which is widely used as separator. Low carbon steel has not a good corrosion resistance. In order to improve the corrosion resistance and electrolytic conductivity, low carbon steel needs to be surface treated. We made Chromium electroplated layer of $5{\mu}m$, $10{\mu}m$ thickness on the surface of low carbon steel and it was nitrided for 2 hours at $1000^{\circ}C$ in a furnace with 100 torr nitrogen gas pressure. Cross-sectional and surface microstructures of surface treated low carbon steel are investigated using SEM. And crystal structures are investigated by XRD. Interfacial contact resistance and corrosion tests were considered to simulate the internal operating conditions of PEMFC stack. The corrosion test was performed in 0.1 N $H_2SO_4$ + 2 ppm $F^-$ solution at $80^{\circ}C$. Throughout this research, we try to know that low carbon steel can be replaced stainless steel in separator of PEMFC.

Study on the design factor to scale up the zinc/air fuel cell (아연/공기전지의 scale-up을 위한 설계인자 연구)

  • Lee, Hoil;Oh, Taeyoung;Park, Sangmin;Kim, Jungyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • 전세계는 $CO_2$ 규제강화와 에너지의 효율적 사용에 대한 사회적, 경제적 요구가 증대되면서 친환경 에너지 설비와 지능형 전력망(smart grid)가 크게 예상되고 있다. 이에 따라 기존 내연기관에 근거한 발전산업 및 자동차 산업은 필연적으로 청정에너지 기반의 전기에너지로 점진적으로 대체될 것으로 판단된다. 따라서, 청정 발전 시스템의 보급 확대와 기존 에너지의 효율적 사용을 위해서 2차전지 기반의 전력저장 기술과 연료전지 기반의 분산발전 기술이 향후 미래에너지 산업의 근간이 되는 중요한 기술들로 부상하게 되었다. 아연/공기전지는 현재는 연료전지 개념의 1차전지에 기술수준이 머물러 있지만 향후 미래에는 기존의 리튬이온전지의 낮은 에너지밀도를 극복할 수 있는 미래 2차전지 기술의 하나로 평가받고 있다. 본 연구에서는 이러한 연료전지 개념의 아연/공기전지에 대하여 기존의 수소연료전지 기반의 분산발전 분야에 적용한다면 약 1/10 이하의 가격으로 조기에 시장진입이 가능할 것으로 판단하여 사전 타당성 연구 및 대면적화를 위한 기초 설계인자 연구를 수행하였다. 연구결과, 소형 단전지부터 약 800cm2까지의 대면적 단전지까지 대면적화를 위한 기초연구를 실시하였으며, 4개의 cell로 구성된 최고출력 90W급 전해질 순환형 미니스택 시스템을 구성하여 발전시스템으로서의 가능성과 문제점 등을 도출하였다. 이러한 시험결과를 바탕으로 25개의 cell로 구성된 약 1kW 급 스택을 설계하여 향후 소형 발전시스템을 제작하고자 하였다.

  • PDF

A Basic Study on the Stress Field in the Electrode Interface of the Planar SOFC Single Cell (평판형 SOFC 단전지 전극계면에서 발생되는 응력장에 관한 기초적 연구)

  • Park, Chul Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.5-9
    • /
    • 2013
  • Recently, eco-friendly sources of energy by fuel cells that use hydrogen as an energy source has emerged as the next generation of energy to solve the problem of environmental issues and exhaustion of energy. A solid oxide fuel cell(SOFC) classified based on the type of ion transfer mediator electrolyte has actively being researched. However, the reliability according to the thermal cycle is low during the operation of the fuel cell, and deformation problem comes from the difference in thermal expansion coefficient between the electrode material, the components made of ceramic material is also brittle, which means disadvantages in terms of the strength. Therefore, in this study, considering the states of the manufacturing and operating of SOFC single cells, the stress analyses in the each of the interfacial layer between the anode, electrolyte and the cathode were performed to get the basic data for reliability assessment of SOFC. The obtained results show that von Mises stress according to the thickness direction on operating state occurred maximum stress value in the electrolyte layer. And also the stresses inside the active area on a distance of 1 ${\mu}m$ from the electrode interface were estimated. Futhermore the evaluation was done for the variation of the stress according to the stage of the operation divided into three stages of manufacturing, stack, and operating.

Compounding and Test of Gasket Rubber for Fuel Cell Stack Application (연료전지 스택 가스켓용 고무재료의 제조와 평가)

  • Hur, Byung-Ki;Kang, Dong-Gug;Kim, Hye-Young;Seo, Kwan-Ho;Park, Lee-Soon
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2007
  • We examined the properties of compound and made compound of the optimum state using the properties of each material to evaluate suitability of FKM, VMQ, EPDM, NBR with gasket for fuel cell which is in general use with the material of gasket. It could be found from the compound made with setting the optimum state that NBR is worse than FKM in the chemical property of matter for a long term, and VMQ is worse than FKM in the elution of a metal ion, and EPDM is worse than FKM in the permeability of gas. As a result of leak evaluation of gasket for fuel cell with using FKM, it appeared leak in short time when contracting pressure is getting lower and sealing pressure is getting higher. And as a result of the life prediction with using Arrhenius model, we could predict that it is possible to continuously drive for 60,000 hours.

고농도 NO와 $SO_2$ 에서 Chlorella sp. HA-1의 생물학적 $CO_2$ 고정화에 관한 연구

  • Lee, Ju-Hyeong;Lee, Jae-Yeong;Gwon, Tae-Sun;Yang, Ji-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.503-504
    • /
    • 2001
  • Characteristics of $CO_2$ fixation by Chlorella sp. HA -1 against NO and $SO_2$ were investigated. Culture pH in nitric oxide gas remained stable indicating that nitric oxide was not likely to be a problem for growth, while $SO_2$ could inhibit the cell growth because of pH drop. Chiarella sp. HA -1 containing 10% $CO_2$ from stack gas can be tolerant to 100 ppm nitric oxide and 100 ppm sulfuric oxide through pH control.

  • PDF

Development of 1kW Class PEFC System for Residential Power Generation (1kW급 PEFC 가정용 연료전지 시스템 실증 연구)

  • Lee, Ho-Jun;Lee, Jung-Min;Hwang, Nam-Sun;Choi, Dong-Min;Lee, Jong-Wook;Oh, Si-Doek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.17-20
    • /
    • 2008
  • HYOSUNG manufactured and tested 1kW class PEFC systems to generate electrical and thermal energy for each residential usage. In particular, HYOSUNG developed power conditioning system that performs over 91% electrical conversion ratio specified in 1kW class PEFC systems. Prior to system integration, we tested each performances of components to derive control issues from it. In addition, we have been developing the adequate simulator to describe and predict system performance. In this paper, we verified HYOSUNG's 1kW class PEFC systems are valid for residential energy sources by testing the characteristics of systems and performances of main components.

  • PDF

Development of WiBro Access Point for Offering WiBro Service with Enhanced Quality in Indoor Environment (옥내 WiBro 서비스 품질 향상을 위한 WiBro AP 개발)

  • Kwak, Do-Young;Lee, Jong-Sik;Park, Se-Jun;Lee, Seong-Choon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.269-272
    • /
    • 2007
  • In order to expand cell coverage, increase system capacity, and offer various multimedia service with high throughput in indoor environment, WiBro Access Point(AP) is developed. Home AP is IFA/Omni type and has stack-up structure of channel card and RF board. SOHO AP is designed to support up to 2FA and has remote RF(RRF) structure using UTP method. Inter-operational test with mobile terminal were completed for 3 terminals using web browsing service simultaneously. The performance test results of WiBro AP are as follows: RCE(EVM) value is -34.431 dB for 64-QAM and throughput is up to 6.79 Mbps(DL) and 1.1 Mbps(UL) with 2.5m Line-of-Sight(LOS) condition.

  • PDF

A Load Following Power Conversion System for 15V, 1kW Fuel Cell Stack (15V, 1kW 연료전지 스택을 위한 부하추종형 전력변환장치)

  • Park, Chansoo;Oh, Hyeongmin;Choi, Sewan;Park, Gawoo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.332-333
    • /
    • 2011
  • 본 논문에서는 15V, 1kW 저전압 연료전지를 위한 고효율 전력변환장치를 제안한다. DC-DC 컨버터로는 15V에서 380V로의 고승압에 적합한 입력병렬 출력직렬 부스트 하프브리지를 제안하였는데 이는 전부하영역에서 ZVS 턴온으로 96%의 최고 효율을 달성하였다. 또한 DC-AC 인버터부는 상용전원으로의 변환 및 DC 링크 전압 제어를 수행한다. 1kW급 시작품을 제작하여 그 성능을 검증하였다.

  • PDF

Study of Au-PTFE/Al Metallic bipolar plate for PEMFC (고분자 전해질형 연료전지용 Au-PTFE/Al 금속분리판 연구)

  • Yoo, Seung-Eul;Kim, Myong-Hwan;Goo, Young-Mo
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.75-82
    • /
    • 2007
  • Aluminum was used as metallic bipolar plate material to reduce a stack weight. The functional materials such as conductive material, Au and nonconductive material, PTFE [polytetrafluoroethylene] were coated on the bipolar plate to enhance electrical contact and corrosion prevention in PEMFC. The active area of bipolar plate is divided into the top layer part that electric current mainly passes, and the bottom layer part that gas and water pass. The bottom layer part in the flow channel needs not to have electrical conductivity because it doesn't pass electric current directly. In this reason, Au on the top layer and PTFE on the bottom layer were coated to apply high electrical conductivity and/or good corrosion resistance. Although the single cell performance using Au-PTFE/Al bipolar plate was shown 78% in comparison with that of graphite, specific power of Au-PTFE/Al bipolar plate(0.4 W/g) was twice as much as graphite bipolar plate.

  • PDF