• Title/Summary/Keyword: Stack Temperature

Search Result 344, Processing Time 0.022 seconds

Numerical Studies of Cell Temperature Distribution in MCFC Stack According to Electrical Loads (전기 부하에 따른 용융탄산염 연료전지 스택 온도 분포에 관한 수치 해석 연구)

  • Kim, Do-Hyung;Kim, Beom-Joo;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.258-263
    • /
    • 2010
  • A numerical stack model has been developed to predict the temperature at a constant-load operation of molten carbonate fuel cell stacks. For the validity of the model, the simulated results with several boundary conditions were compared in the cell temperature data obtained from 75 kW class MCFC stack operation. It was shown that the simulated results with the existing boundary condition, which the stack outlet temperature was fixed at $650^{\circ}C$, didn't match well with the measured data. On the other hand, the stack model with the outlet temperature modified by the outlet manifold temperature measured from the stack under several electric loads was found to explain the measured cell temperature distribution well. The results show that the model can be used to predict the cell temperature distribution in the stacks by the measurement of the manifold outlet temperature.

Temperature Characteristics of the Molten Carbonate Fuel Cell Stack (용융탄산염형 연료전지의 스택구조와 온도특성)

  • Lee, Choong-Gon;Ahn, Kyo-Sang;Park, Seong-Yeon;Seo, Hai-Kyung;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.54-61
    • /
    • 2004
  • Temperature characteristics in a stack of molten carbonate fuel cell (MCFC) have been investigated with simulation based on the computational fluid dynamics (CFD) codes and experimental way. The MCFC has generally two stack structures when the natural gas is used as fuel; one is the external reforming type and the other is internal reforming type. Computer simulation at the external reforming stack suggests that the maximum temperature in the stack depends on the gas flow length. The 2 kW MCFC stack with 25 cm gas flow length showed about $675^\circ{C}$ of maximum temperature.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Analysis of Thermal Effect by Coolant Plate Number in High-Temperature Polymer Electrolyte Membrane Fuel Cell Stack (고온형 고분자 전해질 연료전지 스택 내부의 냉각판 수가 스택에 미치는 열 영향성의 수치적 연구)

  • Choi, Byung Wook;Ju, Hyun Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.127-135
    • /
    • 2015
  • High-Temperautre Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) with phosphoric acid-doped polybenzimidazole (PBI) membrane has high power density because of high operating temperature from 100 to $200^{\circ}C$. In fuel cell stack, heat is generated by electrochemical reaction and high operating temperature makes a lot of heat. This heat is caouse of durability and performance decrease about stack. For these reasons, heat management is important in HT-PEMFC. So, we developed HT-PEMFC model and study heat flow in HT-PEMFC stack. In this study, we placed coolant plate number per cell number ratio as variable and analysed heat flow distribution in stack.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Min-Soo;Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.49-54
    • /
    • 2005
  • There is close relation between the heat generation in the fuel cell stack and the fuel performance. In PEM fuel cell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the slack power generation can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cell output power can be carried out to maximize the performance of fuel cell system.

  • PDF

A Study on the Optimization of Fuel-Cell Stack Design (연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

A Study on the Stack Temperature Profile of a Standing Wave Thermoacoustic Cooler (정재파 열음향 냉각기의 스택 온도구배에 대한 연구)

  • Paek, In-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Investigations of the relation between the stack temperature profile of a standing wave thermoacoustic cooler and the cooling efficiency were performed. Based on the mathematical derivations using the Rott Equation, it was found that the temperature profile along the stack becomes nonlinear as the enthalpy flux passing through the stack increases. It was also found that such nonlinear temperature profiles lower the cooling efficiency. Simulations using a thermoacoustic simulation program called DELTAE showed that the nonlinear temperature profile occurs with a long stack and large cooling load.

Optimization of Fuel-cell stack design using CFD-ACE (CFD-ACE를 이용한 연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.14-18
    • /
    • 2003
  • Feul-cell system consists of fuel reformer, stack and energy translator. Among these parts, slack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack, and control of coolant are needed. Especially, water or air is used as a coolant to dissipate heat. The different temperature of each electric cells after cooling and the high temperature of the stack affect the performance of the stack, Therefore, it is necessary that the relationship between coolant, healing rate, width of slack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

  • PDF

Operation of A Small MCFC Stack Using New Designed Circular Separator (새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전)

  • Han, Jonghee;Roh, Gil-Tae;Yoon, Sung Pill;Nam, Suk Woo;LIm, Tae Hoon;Hong, Seong Ahn
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.

Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가)

  • KIM, JI-HONG;KIM, MINJIN;KIM, JINSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2018
  • Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.