DOI QR코드

DOI QR Code

A Study on the Stack Temperature Profile of a Standing Wave Thermoacoustic Cooler

정재파 열음향 냉각기의 스택 온도구배에 대한 연구

  • 백인수 (강원대학교 공과대학 기계.메카트로닉스 공학부)
  • Published : 2009.01.31

Abstract

Investigations of the relation between the stack temperature profile of a standing wave thermoacoustic cooler and the cooling efficiency were performed. Based on the mathematical derivations using the Rott Equation, it was found that the temperature profile along the stack becomes nonlinear as the enthalpy flux passing through the stack increases. It was also found that such nonlinear temperature profiles lower the cooling efficiency. Simulations using a thermoacoustic simulation program called DELTAE showed that the nonlinear temperature profile occurs with a long stack and large cooling load.

정재파 열음향 냉각기의 스텍에서의 온도 구배와 냉각기 효율의 관계에 대한 연구를 수행하였다. 스택에서의 로트식 (Rott Equation) 을 이용하여, 스택을 통과하는 엔탈피 플럭스의 크기가 크게 되면, 스택에서의 온도구배가 비선형의 특성을 나타내는 것을 밝혀내었다. 또한 이런 비선형의 스택 온도구배가 열음향 냉각기의 냉각 효율을 저하시키는 것을 확인하였다. 1/4 파장의 정재파 열음향 냉각기를 이용한 시뮬레이션을 통해, 특정길이의 스택에 대해 냉각 용량이 커질수록, 또한 특정냉각 용량에 대해, 스택의 길이가 길어질수록 비선형의 스택 온도구배가 크게 일어남을 알아낼 수 있었다.

Keywords

References

  1. G. W. Swift, Thermoacoustics: A unifying perspective for some engines and refrigerators (Acoustical Society of America, New York, 2002) https://doi.org/10.1121/1.1561492
  2. M. J. Moran and H. N. Shapiro, Fundamentals of engi-neering thermodynamics (Wiley, New York, NY, 2000)
  3. T. J. Holler, "Termoacoustic refrigerator design and per-formance," Ph.D. Dissertation, Physics department, University of CaIifornia, San Diego, 1986
  4. A. Adeff end T.J. Holler, "Design and construction of a solar-powered, thermoacoustically driven, thermoacoustic refrigerator," J. Acoust. Soc. Am. 107, L37-L42, 2000 https://doi.org/10.1121/1.429324
  5. H. Tijani, Loudspeaker-driven thermo-acoustic refrigeration (Ph. D. dissertation, Technische Universiteit Eindhoven, 2001)
  6. M.E. Poese and S.L. Garrett, "Performance measurements on a thermoacoustic refrigerator driven at high amplitudes," J. Acoust. Soc. Am. 107. 107, 2480-2486 2000 https://doi.org/10.1121/1.428635
  7. S. L. Garrett, "Next-generation termal management," Slides used for Presentation, Dallas/Ft. Worth, Texas, October 2002
  8. I. Paek, Performance characterization of thermoacoustic cooler components and systems (Ph. D. dissertation, School of Mechanical Engieering, Purdue University, West Lafayette, IN, 2005)
  9. W. C. Ward and G. W. Swift, DELTAE Tutorial and User's Guide Version 5.1 (Los Alamos National Laboratory, Los Alamos, NM, 2001). Also available online at http://www.lanl.gov/thermoacoustics/doc-options.html
  10. W. Ward and G. Swift, "Design environment for low-amplitude thermoacoustic engines (DeltaE)," J. Acoust. Soc. Am, 95, 3671-3672, 1994. Software and user's guide are available online at http://www.lanl.gov/thermoacoustics/doc-options.html https://doi.org/10.1121/1.409938
  11. W. Ward and G. Swift, "Design environment for low-amplitude thermoacoustic engines (DeltaE)," J. Acoust. Soc. Am, 95, 3671-3672, 1994. Software and user's guide are available online at http://www.lanl.gov/thermoacoustics/doc-options.html
  12. J. H. Mathews and K.D. Fink, Numerical methods using MATLAB(Prentical Hall, New Jersey, 1999), $3^{rd}$ ed
  13. J. Wheatley, T. Hofler, G. W. Swift, and A. Migliori, "An intrinsically irreversible thermoacoustic heat engine," J. Acoust. Soc. Am. 74, 153-170, 1983 https://doi.org/10.1121/1.389624