• Title/Summary/Keyword: Stack Efficiency

Search Result 263, Processing Time 0.023 seconds

A Study on Low Area ESD Protection Circuit with Improved Electrical Characteristics (향상된 전기적 특성을 갖는 저면적 ESD 보호회로에 관한 연구)

  • Do, Kyoung-Il;Park, Jun-Geol;Kwon, Min-Ju;Park, Kyeong-Hyeon;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.361-366
    • /
    • 2016
  • This paper presents the ESD protection circuit with improved electrical characteristic and area efficiency. The proposed ESD protection circuit has higher holding voltage and lower trigger voltage characteristics than the 3-Stacking LVTSCR. In addition, it has only two stages and has improved Ron characteristics due to short discharge path of ESD current. We analyzed the electrical characteristics of the proposed ESD protection circuit by TCAD simulator. The proposed ESD protection circuit has a small area of about 35% compared with 3-Stacking LVTSCR, The proposed circuit is designed to have improved latch-up immunity by setting the effective base length of two NPN parasitic bipolar transistors as a variable.

Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration (HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구)

  • Lee, Sang-Ho;Hong, Seong-Dae;Kim, Jeong-Keun;Hwang, Gab-Jin;Moon, Il-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.458-463
    • /
    • 2007
  • An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (메탄올 연료형 SOFC/GT 하이브리드시스템의 성능 평가)

  • Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Kil, Byung-Lea;Park, Sang-Kyun;Kim, Mann-Eung;Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1040-1049
    • /
    • 2010
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of methanol fueled SOFC/GT hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, pressure ratio of turbine, temperature effectiveness of recuperator, turbine inlet temperature.

Optimization of Vent Logic for Cascade Type Fuel Cell Module (캐스캐이드형 연료전지 모듈 벤트 로직 최적화)

  • Lim, Jongkoo;Park, Jongcheol;Kwon, Kiwook;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Many type of fuel cell stacks have been developed to improve the efficiency of reactants usage. The cascade type fuel cell stack using dead end operation is able to attain above 99% usage of hydrogen and oxygen. It is sectionalized to several parts and the residual reactants which are used previous parts would be supplied again to next parts which have less number of cells in dead end operation stack. The oversupply of reactants which is usually 120%~150% of the theoretical amount to generate current for preventing the flooding effect could be provided to each part except the last one. The final section which is called monitoring cells is supposed to be supplied insufficient the fuel or oxidant that would have some accumulated inert gas from former parts. It makes some voltage drop in the part and the fresh reactants must be supplied to the part for recovering it by venting the residual gas. So the usage of fuel and oxidant is depend on the time and frequency of opening valves for venting of residual gas and it is important to optimize the vent logic for achieving higher usage of hydrogen and oxygen. In this research, many experiments are performed to find optimal condition by evaluating the effect of time and frequency under several power conditions using over 100kW class fuel cell module. And the characteristics of the monitoring cells are studied to know the proper cell voltage which decide the condition of opening the vent valve for stable performance of the cascade type fuel cell module.

  • PDF

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

Development of GDL-carbon Composite Bipolar Plate Assemblies for PEMFC (PEM 연료전지용 가스확산층-탄소 복합재료 분리판 조합체 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.406-411
    • /
    • 2021
  • PEM (proton exchange membrane) fuel cells generate only water as a by-product, and thus are in the spotlight as an eco-friendly energy source. Among the various components composing the stack of the fuel cell, research on the bipolar plate that determines the efficiency of the fuel cell is being actively conducted. The composite bipolar plate has high strength, rigidity and corrosion resistance, but has the disadvantage of having a relatively low electrical conductivity. In this study, to overcome these shortcomings, a gas diffusion layer (GDL)-composite bipolar plate assembly was developed and its performance was experimentally verified. The graphite foil coating method developed in the previous study was applied to reduce the contact resistance between the bipolar plate and the GDL. In addition, in order to improve electron path in the stack and minimize the contact resistance between the GDL and the bipolar plate, a GDL-bipolar plate assembly was fabricated using a thin metal foil. As a result of the experiment, it was confirmed that the developed GDL-bipolar plate assembly had 98% lower electrical resistance compared to the conventional composite bipolar plate.

Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems (저출력 및 고출력 SOEC 시스템의 경제성 분석 비교)

  • TUANANH BUI;YOUNG SANG KIM;DONG KEUN LEE;KOOK YOUNG AHN;YONGGYUN BAE;SANG MIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2022
  • Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

Analysis of Levelized Cost of Electricity for Type of Stationary Fuel Cells (발전용 연료전지 형식에 따른 균등화 발전비용 분석)

  • DONGKEUN LEE;TORRES PINEDA ISRAEL;YONGGYUN BAE;YOUNGSANG KIM;KOOKYOUNG AHN;SUNYOUP LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.643-659
    • /
    • 2022
  • For the economic analysis of fuel cells, levelized cost of electricity was calculated according to the type, capacity, and annual production of the fuel cells. The cost of every component was calculated through the system component breakdown. The direct cost of the system included stack cost, component cost, assembly, test, and conditioning cost, and profit markup cost were added. The effect of capacity and annual production was analyzed by fuel cell type. Sensitivity analysis was performed according to stack life, capital cost, project period, and fuel cost. As a result, it was derived how much the economic efficiency of the fuel cell improves as the capacity increases and the annual production increases.

The Method of Container Loading Scheduling through Hierarchical Clustering (계층적 클러스티링 방법을 통한 컨테이너 적재순서 결정 방법)

  • 홍동희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.201-208
    • /
    • 2005
  • Recently, the container terminal requires the study of method to increase efficiency through change of its operation method. Loading plan is a very important part to increase the efficiency of container terminal. Loading Plan is largely divided into two cases, deciding loading location and loading scheduling and this Paper proposes a more efficient method of container loading scheduling. Container loading scheduling is a problem of combination optimization to consider several items of loading location and operation equipments. etc. An existing method of cluster composition that decides the order of container loading scheduling has a restriction to increase the efficiency of work owing to rehandling problem. Therefore, we Propose a more efficient method of container loading scheduling which composes containers with identical attribution, based on ship loading list and yard map, into stack units of cluster, applying to hierarchical clustering method, and defines the restriction of working order. In this process, we can see a possible working path among clusters by defining the restriction of working order and search efficiency will be increased because of restricted search for working path.

  • PDF